Utilizing various statistical techniques to estimate the scale parameter for the Rayleigh distribution


Keywords:
Robust Bayes, Bayes, Rank set, Rayleigh distribution, Frechet distributionAbstract
The purpose of this paper is to use statistical estimating techniques to estimate the scale parameter of the Rayleigh distribution (maximum likelihood, rank set sampling, Bayes, and robust Bayes estimators) under complete data. A non-Bayes estimator is obtained by rank set sampling and maximum likelihood. The inverted gamma distribution and the inverted exponential distribution based on symmetric unbalanced (squared error) and balanced (squared) loss functions were used as Bayesian estimators. Robust Bayes analysis for the Rayleigh distribution depends on (unbalanced and balanced) loss functions based on (ML-II-ϵ-contaminated class and derived under the prior contaminant distribution of the Frechet distribution. The estimators' performances were contrasted according to simulation experiments for different cases and sample sizes depending on the value for the mean squared error.
References
K. Krishnamoorthy, Rayleigh Distribution. Chapman and Hall/CRC, 2020. doi: 10.1201/b19191-38.
F. Merovci and I. Elbatal, “Weibull-Rayleigh Distribution : Theory and Applications,” Appl. Math. Inf. Sci., vol. 9, no. 5, pp. 1–11, 2015.
A. Klivans, P. K. Kothari, and R. Meka, “Efficient Algorithms for Outlier-Robust Regression,” Proc. Mach. Learn. Res., vol. 75, pp. 1–11, 2018, [Online]. Available: https://www.ias.edu/sites/default/files/math/csdm/2017-2018/KlivansKoMe2018.pdf
B. Alani, D. Salman, and R. Al-Rassam, “Estimation of Bayes Robustness for the Reliability Function for the Distribution Weibull Truncated with Application to Gastric Ulcer b Patients,” IRAQI J. Stat. Sci., vol. 16, no. 29, pp. 1–10, Sep. 2019, doi: 10.33899/iqjoss.2019.164188.
E. A. W. Slob and S. Burgess, “A comparison of robust Mendelian randomization methods using summary data,” Genet. Epidemiol., pp. 1–17, 2020, doi: 10.1002/gepi.22295.
L. K. Hussein, H. A. Rasheed, and I. H. Hussein, “A Class of Exponential Rayleigh Distribution and New Modified Weighted Exponential Rayleigh Distribution with Statistical Properties,” Ibn AL-Haitham J. Pure Appl. Sci., vol. 36, no. 2, pp. 390–406, 2023, doi: 10.30526/36.2.3044.
S. K. Abraheem, N. J. Fezaa Al-Obedy, and A. A. Mohammed, “Some methods to approximate and estimate the reliability function of inverse Rayleigh distribution,” Results Nonlinear Anal., vol. 7, no. 3, pp. 19–28, 2024, doi: 10.31838/rna/2024.07.03.001.
M. Z. Raqab and M. T. Madi, Generalized Rayleigh Distribution, no. January. 2011. doi: 10.1007/978-3-642-04898-2_275.
L. Wasserman, All of Statistics. in Springer Texts in Statistics. New York, NY: Springer New York, 2004. doi: 10.1007/978-0-387-21736-9.
I. A. Hasson, “The use of Simulation in the Comparison between Some Parameter Estimation Methods and the Reliability of the Rayleigh Distribution for Complete Data and First- Type Control Data,” J. Coll. basic Educ., vol. 19, no. 80, pp. 45–62, 2013.
S. K. Abraheem, A. A. Mohammed, and H. J. Kadhim, “A numerical comparison between the approximation and the estimation of the reversed hazard rate function for the inverted Kumaraswamy distribution,” in AIP Conference Proceedings, 2024, p. 040002. doi: 10.1063/5.0237170.
D. A. Wolfe, “Ranked Set Sampling: Its Relevance and Impact on Statistical Inference,” ISRN Probab. Stat., vol. 2012, pp. 1–32, Dec. 2012, doi: 10.5402/2012/568385.
S. K. Abraheem, Y. H. Abd, and A. A. Mohammed, “Estimate the shape parameter for the Kumaraswamy distribution via some estimation methods,” Results Nonlinear Anal., vol. 7, no. 1, pp. 142–155, 2024, doi: 10.31838/rna/2024.07.01.011.
Y. A. M. Mahdi and I. A.-S. AbulKadhum, “A Comparison for Some of the Estimators of Rayleigh Distribution with Simulation,” J. Kerbala Univ., vol. 11, no. 4, pp. 104–112, 2013.
P. Oguntunde and O. Adejumo, “The Transmuted Inverse Exponential Distribution,” Int. J. Adv. Stat. Probab., vol. 3, no. 1, pp. 1–7, Dec. 2014, doi: 10.14419/ijasp.v3i1.3684.
F. M. Al-Badran, “Bayes Estimation under Balanced Loss Functions,” J. Adm. Econ., vol. 44, no. 119, pp. 108–120, Mar. 2019, doi: 10.31272/JAE.42.2019.119.8.
N. Karadayı, B. Saraço˘ Glu, and A. Pekgör, “Stress-Strength Reliability and Its Estimation for a Component Which Is Exposed Two Independent Stresses,” Selçuk J. Appl. Math. Selçuk J. Spec. Issue, no. March 2015, pp. 131–135, 2011.
S. Ali, M. Aslam, N. Abbas, and S. M. Ali Kazmi, “Scale Parameter Estimation of the Laplace Model Using Different Asymmetric Loss Functions,” Int. J. Stat. Probab., vol. 1, no. 1, pp. 105–127, Apr. 2012, doi: 10.5539/ijsp.v1n1p105.
K. Abbas and T. Yincai, “Comparison of Estimation Methods for Frechet Distribution with Known Shape,” Casp. J. Appl. Sci. Res., vol. 1, no. 10, pp. 58–64, 2012, [Online]. Available: http://www.cjasr.com
P. L. Ramos, F. Louzada, E. Ramos, and S. Dey, “The Fréchet distribution: Estimation and application - An overview,” J. Stat. Manag. Syst., vol. 23, no. 3, pp. 549–578, Apr. 2020, doi: 10.1080/09720510.2019.1645400.
J. Berger and L. M. Berliner, “Robust Bayes and Empirical Bayes Analysis with ε-Contaminated Priors,” Ann. Stat., vol. 14, no. 2, pp. 461–486, Jun. 1986, doi: 10.1214/aos/1176349933.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Results in Nonlinear Analysis

This work is licensed under a Creative Commons Attribution 4.0 International License.