Investigations of a Riemannian manifold with a quarter symmetric metric (QSM) connection to its tangent bundle

Investigations of a Riemannian manifold with a QSM connection


Abstract views: 158 / PDF downloads: 131

Authors

  • Mohammad Nazrul Islam Khan Qassim University
  • Nahid Fatima Price Sultan University
  • Afifah Al Eid Price Sultan University
  • Shavej Ali Siddiqui

Keywords:

Connection, Gauss equation, Weingarten equation, Codazzi equation, Curvature tensor, Mathematical operators, Partial differential equations, Submanifold, Tangent bundle

Abstract

The present paper aims to study a quarter symmetric metric connection in the
tangent bundle and investigate an induced metric and connection on a submanifold
of co-dimension 2 and hypersurface concerning the QSM connection in the tangent
bundle TM. Totally geodesic (TG) and totally umbilical (TU) concerning the QSM
connection on the submanifold of co-dimension 2 and hypersurface in TM are obtained.

Author Biography

Shavej Ali Siddiqui

Department of Mathematics

Assistant Professor

References

O. Bahadir, Lorentzian para-Sasakian manifold with quarter-symmetric non-metric connection, Journal of Dynamical Systems and Geometricc Theories, 14 (2016), no. 1, 17-33.

L. S. Das, R. Nivas and M. N. I. Khan, On submanifolds of codimension 2 immersed in a hsu–quarternion manifold, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 25 (2009), no. 1, 129-135.

S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor, N. S.

(1975), 249-254.

H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc., 34 (1932),

-50.

M. N. I. Khan, On generalized Ricci-Recurrent Lorentzian Para-Sasakian manifold,

Proceeding of National Academy of Sciences, 75(II), 147-148 (2005).

M. N. I. Khan and J. B. Jun, Lorentzian almost r-para-contact structure in the tangent

bundle, Journal of the Chungcheong Mathematical Society, 27(1), 29-34, 2014.

M. N. I. Khan, Novel theorems for the frame bundle endowed with metallic structures

on an almost contact metric manifold, Chaos, Solitons & Fractals, 146, may 2021,

D. H. Jin and J. W. Lee, Einstein half lightlike submanifolds of a Lorentzian space

form with a semi-symmetric metric connection, Quaestiones Mathematicae, 37, (2014),

no. 4, 485-505.

M. N. I. Khan, Lifts of hypersurfaces with quarter-symmetric semi-metric connection

to tangent bundles, Afrika Matematika, 27 (2014), 475-482.

M. N. I. Khan, F. Mofarreh and A. Haseeb, Tangent bundles of P-Sasakian manifolds

endowed with a QSM connection, Symmetry 15(3) (2023), 753.

M. N. I. Khan, F. Mofarreh, A. Haseeb and M. Saxena, Certain results on the lifts

from an LP-Sasakian manifold to its tangent bundle associated with a QSM connection,

Symmetry 15(8) (2023), 1553.

R. Kumar, L. Colney and M. N. I. Khan, Lifts of a semi-symmetric non-metric connection (SSNMC) from statistical manifolds to the tangent bundle, Results in Nonlinear

Analysis 6(3) (2023), 50–65.

M. N. I. Khan, Lifts of semi-symmetric non-metric connection on a K¨ahler manifold,

Afrika Matematika, 27 (2016), no. 3, 345-352.

M. N. I. Khan, Tangent bundle endowed with quarter-symmetric non-metric connection on an almost Hermitian manifold, Facta Universitatis, Series: Mathematics and

Informatics 35 (1), (2020) 167-178.

Suwais, K.; Ta¸s, N.; Ozg¨ur, N.; Mlaiki, N. Fixed Point Theorems ¨

in symmetric Controlled M-Metric type Spaces. Symmetry 2023, 15, 1665.

https://doi.org/10.3390/sym15091665.

Qaralleh, R.; Tallafha, A.; Shatanawi, W. Some Fixed-Point Results

in Extended S-Metric Space of type (α, β). Symmetry 2023, 15, 1790.

https://doi.org/10.3390/sym15091790.

M. M. Kankareja, S. Pandey and J. P. Singh, Fractional electromagnetic fields in DPS

and DNG regions with standard fractional vector cross product, Results in Nonlinear

Analysis 6 (2023) no.. 3, 76–81.

Y. Liang, On semi-symmetric recurrent-metric connection, Tensor N. S., 55(1994),

-112.

A. K. Mondal and U. C. De, Some properties of a QSM connection on a sasakian

manifold, Bulletin of Mathematical analysis and applications, 1 (2009), no. 2, 99-108.

S. Mukhopadhyay, A. K. Roy and B. Barua, Some properties of a QSM connection

on a Riemannian manifold, Soochow J. of Math. 17 (1991), no. 2, 205-211.

M. Ozkan and F. Yılmaz, Prolongations of Golden Structures to Tangent Bundles of ¨

Order, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 65 (1) (2016), 35-47.

R. Prasad and A. Haseeb, Conformal curvature tensor on K-contact manifold with

respect to the QSM connection, FACTA UNIVERSITATIS (NIS) Ser. Math. Inform,

(2017), no. 4, 503-514.

E. Pak, On the pseudo-Riemannian spaces, J. Korean Math. Soc. 6 (1969), 23-31.

Rahim, M.; Shah, K.; Abdeljawad, T.; Aphane, M.; Alburaikan, A.; Khalifa, H.

A. E. W. Confidence Levels-Based p, q-Quasirung Orthopair Fuzzy Operators and

Its Applications to Criteria Group Decision Making Problems, IEEE Access 2023, 1,

-109996. 10.1109/ACCESS.2023.3321876

S. Sular, C. Ozgur and U. C. De, Quarter symmetric metric connection in a Kenmotsu

manifold, SUT Journal of mathematics 44 (2008), no. 2, 297-306.

M. Tani, Prolongations of hypersurfaces of tangent bundles, Kodai Math. Semp. Rep 21 (1969), 85-96.

S. Ali and R. Nivas, On submanifolds immersed in a manifold with quarter-symmetric connection, Riv. Mat. Univ. Parma. 6 (3) (2000), 11-23.

K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker Inc., New York, 1973.

Downloads

Published

2024-07-22

How to Cite

Khan, M. N. I., Nahid Fatima, Al Eid, A., & Siddiqui, S. A. (2024). Investigations of a Riemannian manifold with a quarter symmetric metric (QSM) connection to its tangent bundle: Investigations of a Riemannian manifold with a QSM connection. Results in Nonlinear Analysis, 7(3), 47–54. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/369