Applications of higher-order q-derivative operator for a new subclass of meromorphic multivalent q-starlike functions related with the Janowski functions
Abstract views: 151 / PDF downloads: 81
Keywords:
q-derivative operator;, q-Calculus, Integral operators, multivalent meromorphic q-starlike functions, Janowski functions., Partial sums;Abstract
In this paper, we expand on the notion of the q-derivative (or q-difference) operator for meromorphic multivalent functions, define the higher- order q-derivative operator for meromorphic multivalent functions associated with quantum calculus, and introduce new subclasses of meromorphic multivalent q- starlike functions in connection with Janowski functions. Linked to meromorphic multivalent q-starlike functions, we investigate a characterisation of the Janowski functions and higher-order q-derivative operators. Among the many potential uses of this class that we investigate are estimates for coefficients, distortion theorems, partial sums, the starlikeness radius, and a few other well-established results.
References
Aouf, M. K., Silverman, H., Partial sums of certain meromorphic #-valent functions, J.
Inequal. Pure Appl. Math. 7 (4) (2006), Art. 116.
Cho, N. E., Owa, S., Partial sums of certain meromorphic functions, J. Inequal. Pure Appl.
Math. 5 (2) (2004) Art. 30.
Frasin, B. A., Darus, M. On certain meromorphic functions with positive coe¢ cients,
Southeast Asian Bull. Math, 28 (4) (2004), 615-623.
Srivastava, H. M., Hossen, H. M., Aouf, M. K., A uni ed presentation of some classes of
meromorphically multivalent functions, Computers Math. with Appl. 38 (11-12) (1999),
-70.
Srivastava, H.M., Owa, S. Current topics in analytic function theory, World Scienti c,
Singapore, 1992.
Clune, J., On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215-216.
Miller, J. E., Convex meromorphic mappings and related functions, Proa. Amer. Math.
Soc. 25 (1970), 220-228.
Pommerenke, C., On meromorphic starlike functions, Paci c J. Math. 13 (1963), 221-235.
Royster, W. C., Meromorphic starlike multivalent functions, Trans. Amer. Math. Soc. 107
(1963), 300-308.
Gasper, G., Rahman, M., Basic Hypergeometric Series, Cambridge University Press, Cam-
bridge (1990).
Jackson, F. H., On q-de nite integrals, Quarterly J. Pure Appl. Math. 41 (1910), 193-203.
Jackson, F. H., q-di¤erence equations, Amer. J. Math, 32 (1910), 305-314.
Mahmood, S., Ahmad, Q. Z.,Srivastava, H. M., Khan, N., Khan, B., Tahir, M., A certain
subclass of meromorphically q-starlike functions associated with the Janowski functions,
J. Inequal. Appl. 2019 (2019), Art. 88.
Srivastava, H. M.,Univalent functions, fractional calculus, and associated generalized hy-
pergeometric functions, in Univalent Functions; Fractional Calculus; and Their Appli-
cations (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited,
Chichester), pp. 329354, John Wiley and Sons, New York, Chichester, Brisbane and
Toronto, 1989.
Srivastava, H. M., Operators of basic (or q-) calculus and fractional q-calculus and their
applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans.
A: Sci. 44 (2020), 327-344.
Ismail, M.E.H., Merkes, E. Styer, D. A generalization of starlike functions, Complex Vari-
ables Theory Appl, 14 (1990), 77-84.
Rehman, M. S., Ahmad, Q. Z., Srivastava, H. M., Khan, B., Khan, N., Partial sums of
generalized q-Mittag-Le er functions, AIMS math., 5 (1) (2019), 408420.
Srivastava, H. M., Bansal, D., Close-to-convexity of a certain family of q-Mittag-Le er
functions, J. Nonlinear Var. Anal. 1(1) (2017), 6169.
Srivastava, H. M., Khan, B., Khan, N., Ahmad, Q. Z. Tahir, M., A generalized conic
domain and its applications to certain subclasses of analytic functions, Rocky Mountain
J. Math. 49 (7) (2019), 23252346.
Mahmood, S., Srivastava, H. M., Khan, N., Ahmad, Q. Z., Khan, B., Ali, I. Upper bound
of the third Hankel determinant for a subclass of q-starlike functions, Symmetry 11 (2019),
, 1-13.
Srivastava, H. M., Ahmad, Q. Z., Khan, N., Khan, N., Khan, B., Hankel and Toeplitz
determinants for a subclass of q-starlike functions associated with a general conic domain,
Mathematics 7(2) (2019), 181, 115.
Srivastava, H. M., Tahir, M.,Khan, B., Ahmad, Q. Z., Khan, N., Some general classes
of q-starlike functions associated with the Janowski functions, Symmetry 11 (2019), 292,
14.
Srivastava, H. M., Khan, , B., Khan, N., Ahmad, Q. Z., Coe¢ cient inequalities for q-
starlike functions associated with the Janowski functions, Hokkaido Math. J. 48 (2019),
425.
Srivastava, H. M., Tahir, M., Khan, B., Ahmad, Q. Z., Khan, N. Some general families
of q-starlike functions associated with the Janowski functions, Filomat, 33 (9) (2019),
2626.
Hussain, S., Khan, S.,Zaighum, M. A., Darus, M.,Shareef, Z., Coe¢ cients bounds for cer-
tain subclass of bi-univalent functions associated with Ruscheweyh q-di¤erential operator,
Journal of Complex Analysis, V 2017, Article ID 2826514, (2017), 9 pages.
Q. Khan, M. Arif, M. Raza, G. Srivastava and H. Tang, Some applications of a new integral
operator in q-analog for multivalent functions. Mathematics 7 (12) (2019), Article ID 1178,
13.
Liu, Z. G. An expansion formula for q-series and applications, Ramanujan J. 6 (2002),
447.
Mahmood, S., Raza, N., Abu Jarad, E. S., Srivastava, G., Srivastava , H. M., Malik, S. N.,
Geometric properties of certain classes of analytic functions associated with a q-integral
operator, Symmetry. 11 (5) (2019), 719, 114.
Srivastava, H. M., Aouf, M. K., Mostafa, A. O., Some properties of analytic functions
associated with fractional q-calculus operators, Miskolc Math. Notes 20 (2019), 12451260.
Zhan, C., Khan, S., Hussain, A.,Khan, N., Hussain, S., Khan, N., Applications of q-
di¤erence symmetric operator in harmonic univalent functions, AIMS Mathematics, 7(1),
(2021), 667680.
Zhang, X., Khan, S., Hussain, S., Tang, H., Shareef, Z. New subclass of q-starlike functions
associated with generalized conic domain, AIMS Mathematics, 5(5) (2020), 48304848.
Ali, R. M., Ravichandran, V., Classes of meromorphic alpha-convex functions. Taiwan. J.
Math. 14, (2010), 14791490.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Results in Nonlinear Analysis
This work is licensed under a Creative Commons Attribution 4.0 International License.