Certain new subclass of close-to-convex harmonic functions defined by a third-order differential inequality


Abstract views: 171 / PDF downloads: 147

Authors

Keywords:

Harmonic functions, Univalent functions, Close-to-convex functions, Gaussian hypergeometric function.

Abstract

In this paper, we define a new class R_H^(0,λ,δ) (L,M)   of normalized harmonic functions in the open unit disk  U={z∈C:|z|<1} which satisfying the following third-order differential inequality

Re(s^' (z)+λzs^'' (z)+δz^2 s^''' (z)-((L-1)/2M))>|u^' (z)+λzu^'' (z)+δz^2 u^''' (z)|,

Where,  λ≥δ≥0,1≤L<M≤-1,M≠0. First of all, we prove one-to-one correspondence between class R_H^(λ,δ) (L,M)   of analytic functions and class R_H^(0,λ,δ) (L,M)  of harmonic functions. Next we prove that every functions belonging to this class is closed-to-convex in open unit disk U. Furthermore, we investigate various properties of the class R_H^(0,λ,δ) (L,M) , such as coefficient bounds, growth estimates, sufficient coefficient condition. We establish that this class is closed under convex combination and convolution. We involve Gaussian hypergeometric function to discuss some applications of newly defined class of harmonic functions and construct harmonic polynomials which belong to the considered class R_H^(0,λ,δ) (L,M).   We also explore some new and known lemmas to prove our main results.

References

Al-Refai O. Some properties for a class of analytic functions de ned by a higher-order di¤erential inequality. Turkish Journal of Mathematics 2019; 43: 2473-2493. https://doi.org.10.3906/mat-1906-65.

Rosihan MA, Lee SK, Subramanian KG, Swaminathan A. A third-order di¤erential equation and starlikeness of a double integral operator. Abstract and Applied Analysis 2011; https://doi.org/10.1155/2011/901235.

Chichra PN. New subclasses of the class of close-to-convex functions. Proceedings of the American Mathematical Society. 1976; 62 (1), 37-43. https://doi.org/10.1090/S0002-9939- 1977-0425097-1

Clunie J, Sheil-Small T. Harmonic univalent functions. Annales Academiae Scientiarum Fennicae Series A I Mathematica 1984; 9: 3-25.

Dor¤ M. Convolutions of planar harmonic convex mappings. Complex Variable. Theory Applications 2001, 5 (3): 263271. https://doi.org/10.1080/17476930108815381

Duren P. Univalent functions. in: Grundlehren Der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

Duren P. Harmonic mappings in the plane. Cambridge Tracts in Mathematics. 156 Cam- bridge, UK: Cambridge Univ. Press, 2004. https://doi.org/10.1017/CBO9780511546600

Fejér L. Über die positivitat von summen, die nach trigonometrischen order Legendreschen funktionen fortschreiten. Acta Scientiarum Mathematicarum 1925; 75-86 (in German).

Ghosh N, Vasudevarao A. On a subclass of harmonic close-to-convex mappings. Monatshefte für Mathematik 2019; 188: 247-267. https://doi.org/10.1007/s00605-017-1138-7

Goodloe M. Hadamard products of convex harmonic mappings. Complex Variables Theory and Applications 2002; 47 (2): 81-92. https://doi.org/10.1080/02781070290010841

Kim YC, Ponnusamy S. Su¢ ciency for Gaussian hypergeometric functions to be uniformly convex. International Journal of Mathematics and Mathematical Sciences 1999; 22 (4):

-773. https://doi.org/10.1155/S0161171299227652

Lewy H, On the non-vanishing of the Jacobian in certain one-to-one mappings. Bulletin of the American Mathematical Society. 42 (1983), 689692. https://doi.org/10.1090/S0002- 9904-1936-06397-4

Li L, Ponnusamy S. Injectivity of sections of univalent harmonic mappings. Nonlinear

Analysis 2013; 89: 276-283. https://doi.org/10.1016/j.na.2013.05.016

Li L, Ponnusamy S. Disk of convexity of sections of univalent harmonic functions. Journal of Mathematical Analysis and Applications 2013; 408: 589-596. https://doi.org/10.1016/j.jmaa.2013.06.021

Miller SS, Mocanu PT. Di¤erential subordinations and univalent functions. Michigan Mathematical Journal 1981; 28: 157-171. https://doi.org/10.1016/0022-0396(87)90146-X

Miller SS, Mocanu PT. Di¤erential subordinations. Theory and Applications. New York, NY, USA: Marcel Dekker, 1999.

Nagpal S, Ravichandran V. A subclass of close-to-convex harmonic mappings. Complex variables and Elliptic Equations 2014; 59 2: 204-216. https://doi.org/10.1080/17476933.2012.727409 22

Nagpal S, Ravichandran V. Construction of subclasses of univalent harmonic mappings. Journal of the Korean Mathematical Society 2014; 53: 567-592. https://doi.org/10.4134/JKMS.2014.51.3.567

Ponnusamy S, Yamamoto H, Yanagihara H. Variability regions for certain families of harmonic univalent mappings. Complex Variables and Elliptic Equations 2013; 58 (1): 23-34. https://doi.org/10.1080/17476933.2010.551200

Ponnusamy S, Kaliraj AS, Starkov VV. Absolutely convex, uniformly starlike and uniformly convex harmonic mappings. Complex Variables and Elliptic Equations 2016; 61 (10): 1418-1433. https://doi.org/10.1080/17476933.2016.1182518

Rajbala C, Prajapat JK, On a subclass of close-to-convex harmonic mappings. Asian- European Journal of Mathematics 2021; 14 (06), 2150102. https://doi.org/10.1142/S1793557121501023

Singh R, Singh S. Convolution properties of a class of starlike functions. Proceedings of American Mathematical Society 1989; 106: 145-152. https://doi.org/10.2307/2047386

Temme NM. Special functions. An Introduction to the Classical Functions of Mathematical Physics. New York, 694 NY, USA: Wiley, 1996.

Ya¸sar E, Yalç¬n S. Close-to-convexity of a class of harmonic mappings de ned by a third-order di¤erential inequality. Turkish journal of. Mathematics 2021; 45 (2): 678-694. https://doi.org/10.3906/mat-2004-50

Downloads

Published

2023-06-01

How to Cite

Khan, M. F. (2023). Certain new subclass of close-to-convex harmonic functions defined by a third-order differential inequality. Results in Nonlinear Analysis, 6(2), 88–107. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/145