This is an outdated version published on 2023-05-04. Read the most recent version.

Some geometric properties on Lorentzian Sasakian manifolds


Abstract views: 246 / PDF downloads: 186

Authors

  • Shashikant Pandey Department of Mathematics & Astronomy, University of Lucknow, U.P. India
  • Abhishek Singh Department of Mathematics & Astronomy, University of Lucknow, U.P. INDIA.
  • Manisha M. Kankarej Department of Science and Liberal Arts, Rochester Institute of Technology, Dubai, UAE.
  • Jai Pratap Singh Department of Mathematics, B.S.N.V.P.G. College University of Lucknow, U.P. India

Keywords:

Lorentzian Sasakian manifolds, Quarter-symmetric metric connection, Concircular curva- ture tensor, Einstein manifold

Abstract

The objective of the present paper is to study and investigate the geometric properties of Concircular curvature tensor on a Lorentzian Sasakian manifold (in short LS-manifold) endowed with the quarter-symmetric non metric connection. This research is also supported with an example that satisfies the conditions of Concircularly flat and ϒ -Concircularly flat Lorentzian Sasakian manifold endowed
with the quarter-symmetric non metric connection.

References

T. Adati and K. Motsumoto, On conformally recurrent and conformally symmetric P-Sasakian manifolds, Turkish J. Math., 13, (1977), 25–32.

C. S. Bagewadi and Venkatesha, On Concircular ϕ -recurrent LP-Sasakian manifolds, Diff. Geom. Dyn. Sys., 10, (2008), 312–319.

K. K. Baishya and A. A. Shaikh, Some results on LP-Sasakian manifolds, Bull. Math. Soc. Sci. Math. Rommanie Tome, 97, (2006), 197–205.

A. Barman, Semi-symmetric non-metric connection in a P-Sasakian manifold, Novi Sad J. Math., 43, (2013), 117–124.

A. Barman, On Para-Sasakian manifolds admitting semi-symmetric metric connection, Publ. Inst. Math. (Beogard) (N.S.), 95, (2014), 239–247.

D. E. Blair, Inversion theory and conformal mapping, Stud. Math. Libr. 9, Amer. Math. Soc. (2000).

U. C. De, I. Mihai and A. A. Shaikh, On Lorentzian para-Sasakian manifolds, Korean J. Math. Sci. 6, (1999), 1–13.

U. C. De and A. K. Mondal, Some properties of a quarter-symmetric metric connection on a Sasakian manifold, Bull. Math. Analysis Appl., 3, (2009), 99–108.

U. C. De and K. Mandal, Quarter-symmetric metric connection in a P-Sasakian manifold, An. Univ. Vest. Timis. Ser.

A. Friedmann and J. A. Schouten, 211–223. Math-Inform., LIII, (2015), 137–150. Uber die Geometric der halbsymmetrischen U bertragung, Math Z., 21, (1924),

S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.), 29, (1975), 249–254.

M. N. I. Khan, U. C. De, and L. S. Velimirovic, Lifts of a Quarter-Symmetric Metric Connection from a Sasakian Manifold to Its Tangent Bundle, Mathematics, 11, (2023), 53.

M. N. I. Khan, Tangent bundle endowed with quarter-symmetric non-metric connection on an almost Hermitian mani- fold, FACTA UNIVERSITATIS (NIS) Ser. Math. Inform., 35 (1), (2020), 167–178.

K. Matsumoto, On Lorentzian para-contact manifolds, Bull. Yamagata Univ. Natur. Sci., 12, (1989), 151–156.

K. Matsumoto and I. Mihai, On a certain transformation in a Lorentzian para- Sasakian manifold, Tensor (N. S.), 47, (1988), 189–197.

I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publ., Singapore (1992), 155–169.

S. K. Pandey and R. N. Singh, On a quarter-symmetric metric connection in an LP-Sasakian manifold, Thai J. Math., 12, (2014), 357–371.

R. Prasad, S. Pandey and A. Haseeb, On a Lorentzian Sasakian manifold endowed with a quarter-symmetric metric connection, An. Univ. Vest. Timis. Ser. Math-Inform., 57, (2019), 61–76.

I. Sato, On a structure similar to the almost contact structure, Tensor (N.S.), 30, (1976), 219–224.

Downloads

Published

2023-05-02 — Updated on 2023-05-04

Versions

How to Cite

Shashikant Pandey, Abhishek Singh, Manisha M. Kankarej, & Jai Pratap Singh. (2023). Some geometric properties on Lorentzian Sasakian manifolds. Results in Nonlinear Analysis, 6(1). Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/206 (Original work published May 2, 2023)