A modified Laplace transform for certain generalized fractional operators


Abstract views: 88 / PDF downloads: 33

Authors

  • Fahd Jarada
  • Thabet Abdeljawadb

Keywords:

Generalized fractional derivatives, Generalized Caputo, ρ-Laplace transform

Abstract

It is known that Laplace transform converges for functions of exponential order. In order to extend the possibility of working in a large class of functions, we present a modified Laplace transform that we call ρ-Laplace transform, study its properties and prove its own convolution theorem. Then, we apply it to solve some ordinary differential equations in the frame of a certain type generalized fractional derivatives. This modified transform acts as a powerful tool in handling the kernels of these generalized fractional operators.

Downloads

Published

2022-11-07

How to Cite

Fahd Jarada, & Thabet Abdeljawadb. (2022). A modified Laplace transform for certain generalized fractional operators. Results in Nonlinear Analysis, 1(2), 88–98. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/8