Mathematical Inequalities for Optimization and Decision-Making in Engineering and Physical Sciences


Abstract views: 0 / PDF downloads: 0

Authors

  • Sameen Ahmed Khan Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Sultanate of Oman
  • Yasser A. Ahmed Department of Computer Engineering, College of Computer Qassim University, Saudi Arabia
  • Teg Alam Department of Industrial Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia

Keywords:

Inequalities, Cauchy--Bunyakovsky--Schwarz inequality,, Bernoulli's inequality, Optimization, Number Theory and Prime Gaps, Inequalities from Physics.

Abstract

The primary objective of this article is to provide an accessible exposition of the dynamic and evolving field of mathematical inequalities, with a particular emphasis on their role in optimization and decision-making within engineering and the physical sciences. We begin with an elementary introduction to fundamental inequalities, followed by a range of illustrative examples that span from classical applications to contemporary research challenges. To demonstrate the breadth and utility of inequalities, we explore examples from diverse areas of mathematics, including the ubiquitous triangle inequality, which arises in contexts ranging from Euclidean geometry to matrix norms. We highlight key results, such as the interlacing of roots of orthogonal polynomials, which are elegantly formulated through inequality frameworks. In number theory, we present select theorems and conjectures—particularly from the active domain of prime gaps—that are naturally expressed using inequalities. The article also examines inequalities in physics, such as the Clausius inequality in thermodynamics, constraints on electron localization in atomic structures, and bounds related to the cardinality of resistor networks. Overall, this paper aims to introduce readers to the techniques and significance of mathematical inequalities, while showcasing their applications in optimization, theoretical analysis, and practical decision-making across multiple scientific and engineering domains.

References

S. Bernard and J. M. Child, Higher Algebra, Macmillan, New Delhi, India (1981).

H. S. Hall and S. R. Knight, Higher Algebra, S. Chand & Company, New Delhi, India, (1995); https://schandgroup.com/.

S. Lipschutz, J. Liu and M. R. Spiegel Schaum’s Outline: Mathematical Handbook of Formulas and Tables, 5th Edition, McGraw-Hill, New York, USA (2018).

M. N. I. Khan, Novel Theorems for Metallic Structures on the Frame Bundle of the Second Order, FILOMAT 36 (13), 4471–4482, 2022.

M. N. I. Khan, Tangent bundles endowed with semi-symmetric non metric connection on a Riemannian manifold, Facta Universitatis, Series: Mathematics and Informatics 36 (4), 855-878, 2022.

B. B. Chaturvedi, P. Bhagat, M. N. I. Khan, Novel theorems for a Bochner flat Lorentzian Ka¨ hler space-time manifold with η-Ricci Yamabe solitons, Chaos, Solitons & Fractals: X 11, 100097, 2023.

K. De, M. N. I. Khan, U.C. De, Almost co-K¨ahler manifolds and quasi Einstein solitons, Chaos, Solitons and Fractals 167, 113050, 2023.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, USA (2014).

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Elsevier, Amsterdam (2014); https://doi.org/10.1016/ C2010-0-64839-5.

J. R. Hass, C. E. Heil, M. D. Weir and P. Bogacki, Thomas’ Calculus, Pearson, London, England, (2022).

T. M. Apostol, Calculus, Volume 1, Wiley, New Jersey (1991).

W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York (1976).

De, P., “The arithmetic mean- Geometric mean– Harmonic mean: In equalities and a spectrum of applications, ”Resonance Journal of Science Education, vol. 21, no. 12, pp. 1119-1133, 2016. DOI: 10.1007/s12045016-0423-4.

Korovkin, P. P. “Inequalities,” Mir Publishers, Moscow, Russia, 1975.

S. L. Loney, Plane Trigonometry Part-1, AITBS Publishers, India (2019).

S. L. Loney, Plane Trigonometry Part-2, AITBS Publishers, India (2019).

E. Maor, Trigonometric Delights, Princeton University Press, 2013.

V. Katter, Historische, logische und individuelle Genese der Trigonometrie aus didaktischer Sicht, Springer, 2023; https://doi.org/10.1007/ 978-3-658-41355-2.

E. Mart´ın-Fern´andez, J. F. Ruiz-Hidalgo, L. Rico, Meaning and Understanding of School Mathematical Concepts by Secondary Students: The Study of Sine and Cosine, EURASIA Journal of Mathematics, Science and Technology Education, 15 (12), em1782 (2019); https: //doi.org/10.29333/ejmste/110490.

S. A. Khan, Trigonometric Ratios Using Geometric Methods, Advances in Mathematics: Scientific Journal, 9 (10), 8685 8702 (2020); https: //doi.org/10.37418/amsj.9.10.94.

S. A. Khan, Teaching Irrational Numbers through Trigonometry, Resonance Journal of Science Education, 26 (6), 813-827 (2021); https: //doi.org/10.1007/s12045-021-1181-5.

S. A. Khan, Trigonometric Ratios Using Algebraic Methods, Mathematics and Statistics, 9 (6), 899-907 (2021); http://dx.doi.org/10.13189/ms.2021.090605.

S. A. Khan, M. M. Kankarej, M. N. I. Khan, Deducing Trigonometric Functions from Differential Equations: An Educational Perspective, European Journal of Pure and Applied Mathematics, 18 (4), (2025). (in press).

W. A. Al-Salam, Characterization Theorems for Orthogonal Polynomials, In: Nevai P., (eds) Orthogonal Polynomials, NATO ASI Series, vol 294, Springer, (1990); http://dx.doi.org/10.1007/ 978-94-009-0501-6-1.

L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan, London, UK (1985).

G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, UK (2009); http://dx.doi.org/10.1017/CBO9780511526251.

R. Chakrabarti and R. Jagannathan, A (p,q)-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen., 24, L711 L718 (1991); http://dx.doi.org/10.1088/0305-4470/24/13/002.

R. Jaganathan and S. Sinha, A q-deformed nonlinear map, Phys. Lett. A., 338, 277-287 (2005); http://dx.doi.org/10.1016/j.physleta.2005.02.042.

R. Jagannathan and S. A. Khan, On the deformed oscillator and the deformed derivative associated with the Tsallis q-exponential, International Journal of Theoretical Physics, 59 (8), 2647-2669 (2020). http://dx.doi.org/10.1007/s10773-020-04534-w.

S. A. Khan and R. Jagannathan, On Certain Appell Polynomials and Their Generalizations Based on the Tsallis q-exponential, Bulletin of the Malaysian Mathematical Sciences Society, 45 (4), 1453-1472 (2022); http://dx.doi.org/10.1007/s40840-022-01292-2.

T. M. Apostol, Introduction to Analytic Number Theory, Springer Verlag, (1995). http://dx.doi.org/10.1007/978-1-4757-5579-4.

J. H. Conway, R. K. Guy, The Book of Numbers, Springer-Verlag, Germany (1996).

J. S´andor, S. D. Mitrinovi´c and B. Crstici,, Handbook of Number Theory I, Springer, Berlin, Heidelberg, (2006); https://doi.org/10.1007/ 1-4020-3658-2.

J. S´andor and B. Crstici,, Handbook of Number Theory II, Springer, Berlin, Heidelberg, (2006); https://doi.org/10.1007/s1-4020-2547-5.

S. Laad, On the Infinitude of Primes, Resonance Journal of Science Education, 25 (10), 1407-1417 (2020); https://doi.org/10.1007/s12045-020-1060-5.

A. R. Vasishtha, Matrices, (3rd Edition), Krishna Prakashan Media Limited, Meerut, India, (2003).

A. W. Joshi, Matrices and Tensors in Physics, (4th Edition), New Age International Publishers (2017); ISBN: 978-93-86070-90-6.

D. S. Bernstein and W. So, Some Explicit Formulas for the Matrix Exponential, IEEE Transactions on Automatic Control, 38 (8), 1228-1232 (1993); http://dx.doi.org/10.1109/9.233156.

S. A. Khan and R. Jagannathan, A new matrix representation of the Maxwell equations based on the Riemann–Silberstein–Weber vector for a linear inhomogeneous medium, Results in Optics, 17, 100747 (2024); https://doi.org/10.1016/j.rio.2024.100747.

S. A. Khan, A Matrix Differential Operator for Passage from Scalar to Vector Optics, Results in Optics, 13, 100527 (2023); https://doi.org/10.1016/j.rio.2023.100527.

S. A. Khan and R. Jagannathan, A matrix formalism of the Maxwell vector wave optics including polarization, Advances in Imaging and Electron Physics, 235, 1-111 (2025); https://doi.org/10.1016/bs.aiep. 2025.06.002.

F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw Hill (2009).

A. Beiser Concept Of Modern Physics, McGraw Hill (2024).

R. Jagannathan and S. A. Khan, Quantum theory of the optics of charged particles, Advances in Imaging and Electron Physics, 97, 257358 (1996); http://dx.doi.org/10.1016/S1076-5670(08)70096-X.

S. A. Khan, Farey Sequences and Resistor Networks, Mathematical Sciences- Proceedings of the Indian Academy of Sciences, 122 (2), 153-182 (2012); http://dx.doi.org/10.1007/s12044-012-0066-7.

S. A. Khan, How many equivalent resistances?, Resonance Journal of Science Education, 17 (5), 468-475 (2012); http://dx.doi.org/10.1007/s12045-012-0050-7.

S. A. Khan, Beginning to count the Number of Equivalent Resistances, Indian Journal of Science and Technology, 9 (44), 1-7 (2016); http: //dx.doi.org/10.17485/ijst/2016/v9i44/88086.

M. Stampfli, Bridged Graphs, Circuits and Fibonacci Numbers, Applied Mathematics and Computation, 302, 68-79 (2017); http://dx. doi.org/10.1016/j.amc.2016.12.030.

Downloads

Published

2026-01-31

How to Cite

Sameen Ahmed Khan, Yasser A. Ahmed, & Teg Alam. (2026). Mathematical Inequalities for Optimization and Decision-Making in Engineering and Physical Sciences. Results in Nonlinear Analysis, 8(4), 69–80. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/738