On certain properties of functions associated with a nonlinear operator
Abstract
In this article, we develop a nonlinear operator $\mathfrak{\Im}% _{\alpha,\gamma}^{\sigma}\left( f\right) \left( z\right) :$% \[ \mathfrak{\Im}_{\alpha,\gamma}^{\sigma}\left( h\right) \left( z\right) :=\left( 1-\alpha \right) \sigma+\alpha \phi \left( z\right) -\frac{\gamma z\phi^{\prime}\left( z\right) }{\phi \left( z\right) }-\left( 1-\alpha-\gamma \right) \frac{z\left( \phi \left( z\right) +z\phi^{\prime }\left( z\right) \right) ^{\prime}}{\phi \left( z\right) +z\phi^{\prime }\left( z\right) }, \] based on the functional $\phi \left( z\right) :=\left( \frac{z}{f\left( z\right) }\right) ^{\sigma}f^{\prime}\left( z\right) :z\in \mathbb{E},$ the open unit disk, $\alpha,\gamma \in \mathbb{R},$ $\sigma \in \left[ -1,1\right] $ \ and find conditions on the functional $\left( \frac{z}{f\left( z\right) }\right) ^{\sigma}f^{\prime}\left( z\right) $ so that it is a filtration. Moreover, we define a family $\mathcal{R}_{\sigma}\left( \alpha ,\gamma \right) $ and study bounds on Fekete-Szeg\"{o} functional $% %TCIMACRO{\tciFourier}% %BeginExpansion \mathcal{F}% %EndExpansion _{f}\left( \eta \right) $ along with some inclusions and different related results. These results can be further extended to symmetric, conjugate symmetric and other related setting in the present formulations.References
T. E. Harris, The Theory of Branching Processes, Springer, Berlin, 1963.
M. E. Jacobson, Computation of extinction probabilities for the Bellman Harris branching process, Math. Biosci.,77(1985) 173-177.
J. Arazy, An application of infinite dimensional holomorphy to the geometry of Banach spaces, Lect. Notes Math. 1267: 122-150, 1987.
M. Abate, Converging semi-groups of holomorphic maps, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988), 223-227.
M. Abate, The infinitesimal generators of semi-groups of holomorphic maps, Ann. Mat. Fum Appl. 161(1992), 167-180.
U. Helmke, and J. B. Moore, Optimization and Dynamical Systems, Springer, London, 1994.
E. Berkson, and H. Porta, Semigroups of analytic functions and composition operators, Michigan Math. J., 25 (1978) 101-115.
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.
H. Brezis, Operateurs Maximaux Monotenes, North Holland, Amsterdam,1973.
M. G. Crandall, and T. M. Ligett, Generation of semi-groups of nonlinear transformations on a general Banach space, Amer. J. Math. 93(1971), 265-298.
P. L. Duren, Univalent functions, in: Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York, Berlin, Tokyo, Vol. 259, 1983.
M. Fekete, and G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. Lond. Math. Soc. 8(1933), 85–89.
F. R. Keogh, and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc Amer. Math. Soc. 20(1969), 8-12.
M. Elin, and F. Jacobzon, Estimates on some functionals over non-linear resolvents, 37(3): 2023.
F. Bracci, M. D. Contreras, and S. Daz-Madrigal, Continuous Semi-groups of Holomorphic Self-maps of the Unit Disk, Springer Monogr. Math., Springer, 2020.
M. Elin, S. Reich, and D. Shoikhet, Numerical Range of Holomorphic Mappings and Applications, Birkhäuser, Cham, 2019.
M. Elin, and D. Shoikhet, Linearization Models for Complex Dynamical Systems. Topics in Univalent Functions, Functions Equations and Semigroup Theory, Birkhäuser Basel, 2010.
M. Nazir, S. Z. H. Bukhari, J-S. Ro, F. Ticher, and S. N. Malik, On inequalities and filtration associated with the nonlinear fractional operator, Fractal Fract., 7(2023), no.10, 726.
D. K. Thomas, and N. Tuneski, and A. Vasudevarao, Univalent Functions. A Primer, De Gruyter Studies in Mathematics, 69, De Gruyter, Berlin, Boston, 2018.
S. S. Miller, and P. T. Mocanu, Univalent solutions of Briot–Bouquet differential equations. J. Diff. Equations, 56(1985), 297-309.
M. Elin, F. Jacobzon, and T. Nikola, The Fekete-Szegö problem and filtration of generators, Rend. Circ. Mat. Palermo, II. Ser 72(2023), 2811–2829.
I. S. Jack, Functions starlike and convex of order α . J. London Math. Soc., (Ser.2); 3(1971), 469-474.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Results in Nonlinear Analysis

This work is licensed under a Creative Commons Attribution 4.0 International License.

