Contravariant reich type F-contraction in F-bipolar metric spaces with application


Abstract views: 12 / PDF downloads: 9

Authors

  • Muhammad Sarwar Department of Mathematics, University of Malakand, Chakdara Dir(L), 18000, Khyber Pakhtunkhwa, Pakistan
  • Nihar Ali Department of Mathematics, University of Malakand, Chakdara Dir(L), 18000, Khyber Pakhtunkhwa, Pakistan
  • Kamaleldin Abodayeh Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
  • Chanon Promsakon Department of Mathematics, Faculty of Applied Science, King Mongkutʼs University of Technology North Bangkok, Bangkok 10800, Thailand
  • Thanin Sitthiwirattham Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok 10300, Thailand

Keywords:

Fixed point, $F$-Bipolar Metric Spaces, Contravariant Reich Type $F$-Contraction;, Integral Equations

Abstract

In this work, we explore fixed point (FP) results using the concept of contravariant Reich-type F -contraction within the framework of F -bipolar metric spaces (F-BMS). Our findings extend certain results from the existing literature. Additionally, we provide an example and an application to demonstrate the existence and uniqueness of the integral equation (IE).

References

Z. Mustafa, M. Khandagji, W. Shatanawi, “Fixed point results on complete G-metric spaces”. Studia Scientiarum Mathematicarum Hungarica 2011, 48(3), 304–319.

U. Ishtiaq, F. Jahangeer, D. A. Kattan, I. K. Argyros “Generalized Common Best Proximity Point Results in Fuzzy Metric Spaces with Application”. Symmetry 2023, 15(8), 1501.

B. Fisher, “Mappings satisfying a rational inequality”. Bulletin mathématique de la Société des Sciences Mathématiques 1980, 24, 247–251.

D. Wardowski, “Fixed points of a new type of contractive mappings in complete metric spaces”. Fixed Point Theory Appl. 2012, 94 .

T. Abdeljawad, K. Abodayeh, N. Mlaiki, “On fixed point generalizations to partial b-metric spaces”. J. Comput. Anal. Appl. 2015, 19, 883–891.

S. Czerwik, “Contraction mappings in b-metric spaces”. Acta Math. Inform. Univ. Ostra. 1993, 1, 5–11.

A. Branciari, “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces”. Publ. Math. Debr. 2000, 57, 31–37.

V. Berinde, M. Pacurar, “The early development in the fixed point theory on b-metric spaces: A brief survey and some important related aspects”, Carpathian J. Math. 38 (2022), 523–538.

J. Brzdek, “Comments on the fixed point results in classes of function with values in a b-metric space”. RACSAM, (2022) 116:35. https://doi.org/10.1007/s13398-021-01173-6

W. Shatanawi, M. Hani, “A coupled fixed point theorem in b-metric spaces”. International Journal of Pure and Applied Mathematics 2016, 109(4), 889–897.

W. Shatanawi, “Fixed and common fixed point for mapping satisfying some nonlinear contractions in b-metric spaces”, Journal of Mathematical Analysis. 2016, 7(4), 1–12.

M. Jleli, “Samet, B. On a new generalization of metric spaces”. J. Fixed Point Theory Appl. 2018, 20, 128.

A. E. Al-Mazrooei, J. Ahmad, “Fixed point theorems for rational contractions in F-metric spaces”. J. Mat. Anal. 2019, 10, 79–86.

A. Mutlu,U. Gürdal, “Bipolar metric spaces and some fixed point theorems”. J. Nonlinear Sci. Appl. 2016, 9, 5362–5373.

U. Ishtiaq, F. Jahangeer, M. Garayev, I. L. Popa “ Existence and Uniqueness Results for Bipolar Metric Spaces”. Symmetry. 2025, 17(2), 180

F. Jahangeer, S. Alshaikey, U. Ishtiaq, T. A Lazar, V. L Lazar, L. Guran “ Certain Interpolative Proximal Contractions, Best Proximity Point Theorems in Bipolar Metric Spaces with Applications”. Frctal and Fractional. 2023, 7(10), 766.

S. Rawat, R. C. Dimri, A. Bartwal, “F-Bipolar metric space and fixed point theorems with applications”. J. Math. Comput. Sci, 26(2022), 184–195.

B. Alamri, “Fixed point results in F-Bipolar Metric Space with applications”. Mathematics. 11(2023). 2399.

A. H. Albargi, “Fixed point theorems for generalized contractions in F -bipolar metric spaces with application”. Aims Math, 2023, 8(12), 29681–29700.

Downloads

Published

2025-09-03

How to Cite

Sarwar, M., Nihar Ali, Kamaleldin Abodayeh, Chanon Promsakon, & Thanin Sitthiwirattham. (2025). Contravariant reich type F-contraction in F-bipolar metric spaces with application. Results in Nonlinear Analysis, 8(2), 328–336. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/617

Most read articles by the same author(s)