On self-similar dendrites in Hilbert space


Abstract views: 1 / PDF downloads: 5

Authors

  • Klara Allabergenova Novosibirsk State University
  • Makhliyo Kadirova Department of Mechanics and Mathematics, Novosibirsk State University, Novosibirsk, Russia

Keywords:

Self-similar set, Open Set Condition, address map, infinitely ramified den￾drite, ramification points

Abstract

We consider the relation of the ramification order of self-similar dendrites in $\mathbb{R}^d$ and in Hilbert space and their Hausdorff dimension and measure.

References

K. Allabergenova, M. Samuel, and A. Tetenov. Intersections of the pieces of selfsimilar dendrites in the plane. Chaos, Solitons & Fractals, 182:114805, 2024.

C. Bandt and S. Graf. Self-similar sets 7. A characterization of self-similar fractals with positive hausdorff measure. Proceedings of the American Mathematical Society, 114(4):995–1001, 1992.

C. Bandt and K. Keller. Self-similar sets 2. A simple approach to the topological structure of fractals. Mathematische Nachrichten, 154(1):27–39, 1991.

C. Bandt and H. Rao. Topology and separation of self-similar fractals in the plane. Nonlinearity, 20(6):1463–1474, May 2007.

C. Bandt and J. Stahnke. Self-similar sets 6. Interior distance on deterministic fractals. Preprint, 1990.

J. J. Charatonik and W. J. Charatonik. Dendrites. Aportaciones Mat. Comun, 22:227–253, 1998.

M. Hata. On the structure of self-similar sets. Japan Journal of Applied Mathematics, 2:381–414, 1985.

J. E. Hutchinson. Fractals and self similarity. Indiana University Mathematics Journal, 30(5):713–747, 1981.

J. Kigami. Harmonic calculus on limits of networks and its application to dendrites. Journal of Functional Analysis, 128(1):48–86, 1995.

J. Kotus and M. Urbański. Meromorphic Dynamics: Abstract Ergodic Theory, Geometry, Graph Directed Markov Systems, and Conformal Measures. Cambridge University Press, 2023.

K. Kuratowski. Topology: Volume II. Elsevier, 2014.

K.-S. Lau and S.-M. Ngai. Multifractal measures and a weak separation condition. Advances in Mathematics, 141(1):45–96, 1999.

A. Schief. Separation properties for self-similar sets. Proceedings of the American Mathematical Society, 122(1):111 115, 1994.

A. Schief. Self-similar sets in complete metric spaces. Proceedings of the American Mathematical Society, 124(2):481-490, 1996.

A. Tetenov. Finiteness properties for self-similar continua. arXiv:2003.04202, 2020.

M. P. W. Zerner. Weak separation properties for self-similar sets. Proceedings of the American Mathematical Society, 124(11):3529–3539, 1996.

Downloads

Published

2025-03-29

How to Cite

Allabergenova, K., & Makhliyo Kadirova. (2025). On self-similar dendrites in Hilbert space. Results in Nonlinear Analysis, 8(1), 184–192. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/604