Fixed point results in neutrosophic fuzzy metric spaces for contractions based on C-class functions


Abstract views: 0 / PDF downloads: 0

Authors

Abstract

In this study, we employ the notion of C-class functions to develop new contraction mappings within the context of neutrosophic fuzzy metric spaces. These contractions are utilized to establish fixed point theorems applicable to complete neutrosophic fuzzy metric spaces, grounded in C-class functions. Furthermore, we present a range of fixed point results pertinent to this particular framework. An illustrative example is also provided to demonstrate our primary findings. Our results serve to extend and generalize several existing outcomes in the literature.

References

L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338–353.

K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986) 87–96.

F. Smarandache, Neutrosophic set, a generalization of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 24 (2005) 287–297.

R.P. Barbosa, F. Smarandache, Neutrosophic one-round zero-knowledge proof, Plithogenic Log. Comput. 2 (2024) 49–54.

A. Hazaymeh, Time fuzzy soft sets and its application in design-making, Int. J. Neutrosophic Sci. 3 (2025) 37–50.

V. Christianto, F. Smarandache, R.N. Boyd, Remark on regenerative medicine and potential utilization of low-intensity laser photobiomodulation to activate human stem cells, Bio-Sci. Res. Bull. (Life Sci.) (2024) 52–55.

A. Hazaymeh, Time effective fuzzy soft set and its some applications with and without a neutrosophic, Int. J.Neutrosophic Sci. 2 (2024) 129.

S.M. Alqaraleh, M.J.S. Abd Ulazeez, M.O. Massa’deh, A.G. Talafha, A. Bataihah, Bipolar complex fuzzy soft sets and their application, Int. J. Fuzzy Syst. Appl. 11(1) (2022) 1–23.

A. Fallatah, M.O. Massa’deh, A.U. Alkouri, Normal and cosets of ( ,) -fuzzy HX-subgroups, J. Appl. Math. Inform. 40(3–4) (2022) 719–727.

S. Alkhazaleh, A.A. Hazaymeh, N-valued refined neutrosophic soft sets and their applications in decision making problems and medical diagnosis, J. Artif. Intell. Soft Comput. Res. 8(1) (2018) 79–86.

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922) 133–181.

E. Karapinar, A. Fulga, Discussions on Proinov-Cb-contraction mapping on b-metric space, J. Funct. Spaces 2023(9) (2023) 1–10.

E. Karapinar, S. Romaguera, P. Tirado, Characterizations of quasi-metric and G-metric completeness involving ω-distances and fixed points, Demonstr. Math. 55(1) (2022) 939–951.

H. Aydi, E. Karapinar, M. Postolache, Tripled coincidence point theorems for weak Φ-contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2012 (2012) 44.

A. Bataihah, Some fixed point results with application to fractional differential equation via new type of distance spaces, Results Nonlinear Anal. 7 (2024) 202–208.

A. Bataihah, T. Qawasmeh, A new type of distance spaces and fixed point results, J. Math. Anal. 15(4) (2024) 81–90.

A. Bataihah, T. Qawasmeh, M. Shatnawi, Discussion on b-metric spaces and related results in metric and G-metric spaces, Nonlinear Funct. Anal. Appl. 27(2) (2022) 233–247.

W. Shatanawi, T. Qawasmeh, A. Bataihah, A. Tallafha, New contractions and some fixed point results with application based on extended quasi b-metric spaces, U.P.B. Sci. Bull. Ser. A 83(2) (2021) 113–124.

I. Abu-Irwaq, I. Nuseir, A. Bataihah, Common fixed point theorems in G-metric spaces with Ω-distance, J. Math. Anal.8(1) (2017) 120–129.

K. Abodayeh, A. Bataihah, W. Shatanawi, Generalized Ω-distance mappings and some fixed point theorems, U.P.B.Sci. Bull. Ser. A 79 (2017) 223–232.

I. Abu-Irwaq, W. Shatanawi, A. Bataihah, I. Nuseir, Fixed point results for nonlinear contractions with generalized Ω-distance mappings, U.P.B. Sci. Bull. Ser. A 81(1) (2019) 57–64.

M. Nazam, M. Arshad, M. Postolache, Coincidence and common fixed point theorems for four mappings satisfying (α(s),F) -contraction, Nonlinear Anal. Model. Control 23(5) (2018) 664–690.

M.S. Khan, Y.M. Singh, G. Maniu, M. Postolache, On (α, p) -convex contraction and asymptotic regularity, J. Math.Comput. Sci. 18 (2018) 132–145.

A. Latif, M. Postolache, M.O. Alansari, Numerical reckoning common fixed point in CAT(0) spaces for a general class of operators, U.P.B. Sci. Bull. 84 (2022) 3–12.

W. Shatanawi, A. Bataihah, Remarks on G-metric spaces and related fixed point theorems, Thai J. Math. 19(2) (2021) 445–455.

A. Bataihah, Fixed point results of Geraghty type contractions with equivalent distance, Int. J. Neutrosophic Sci. 25(3) (2025) 177–186.

W. Shatanawi, G. Maniu, A. Bataihah, F.B. Ahmad, Common fixed points for mappings of cyclic form satisfying linear contractive conditions with Ω-distance, U.P.B. Sci. Bull. Ser. A 79 (2017) 11–20.

A. A. R. M. Malkawi, Existence and Uniqueness of Fixed Points in MR-Metric Spaces and their Applications, Eur. J. Pure Appl. Math., 18(2) (2025), Art. No. 6077.

A. A. R. M. Malkawi, Convergence and Fixed Points of Self-Mappings in MR-Metric Spaces: Theory and Applications, Eur. J. Pure Appl. Math., 18(2) (2025), Art. No. 5952.

A. A. R. M. Malkawi, Fixed Point Theorem in MR-metric Spaces VIA Integral Type Contraction, WSEAS Trans. Math.,24 (2025), 295–299.

A. A. R. M. Malkawi, D. Mahmoud, A. M. Rabaiah, R. Al-Deiakeh, and W. Shatanawi, ON Fixed POINT THEOREMS IN MR-METRIC SPACES, Nonlinear Funct. Anal. Appl., 29 (2024), 1125–1136.

T. Qawasmeh and A. Malkawi, Fixed point theory in MR-metric spaces: fundamental theorems and applications to integral equations and neutron transport, Eur. J. Pure Appl. Math., 18(3) (2025), Art. No. 6440.

A. Malkawi, Enhanced uncertainty modeling through neutrosophic MR-metrics: a unified framework with fuzzy embedding and contraction principles, Eur. J. Pure Appl. Math., 18(3) (2025), Art. No. 6475.

A. Malkawi and A. Rabaiah, MR-metric spaces: theory and applications in weighted graphs, expander graphs, and fixed-point theorems, Eur. J. Pure Appl. Math., 18(3) (2025), Art. No. 6525.

A. Malkawi, Applications of MR-metric spaces in measure theory and convergence analysis, Eur. J. Pure Appl. Math., 18(3) (2025), Art. No. 6528.

A. Malkawi and A. Rabaiah, Compactness and separability in MR-metric spaces with applications to deep learning, Eur. J. Pure Appl. Math., 18(3) (2025), Art. No. 6592.

A. Hazaymeh, Time factor’s impact on fuzzy soft expert sets, Int. J. Neutrosophic Sci. 3 (2025) 155–176.

M. Kirişci, N. Şimşek, Neutrosophic metric spaces, Math. Sci. 14(3) (2020) 241–248.

S. Das, B.K. Roy, M.B. Kar, S. Kar, D. Pamučar, Neutrosophic fuzzy set and its application in decision making, J.Ambient Intell. Humaniz. Comput. 11 (2020) 5017–5029.

K. Menger, Statistical metrics, Proc. Natl. Acad. Sci. U.S.A. 28(12) (1942) 535–537.

S. Ghosh, B. Sonam, R. Bhardwaj, S. Narayan, On neutrosophic fuzzy metric space and its topological properties, Symmetry 16(5) (2024) 613.

N. Şimşek, M. Kirişci, Fixed point theorems in neutrosophic metric spaces, Sigma J. Eng. Nat. Sci. 10(2) (2019) 221–230.

M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30(1) (1984) 1–9.

A.H. Ansari, Note on "ϕ -ψ "-contractive type mappings and related fixed point, Proc. 2nd Reg. Conf. Math. Appl.,Payame Noor Univ. (2014) 377–380.

A.H. Ansari, S. Chandok, C. Ionescu, Fixed point theorems on b-metric spaces for weak contractions with auxiliary functions, J. Inequal. Appl. 2014 (2014) 429.

E. Hoxha, A.H. Ansari, K. Zoto, Some common fixed point results through generalized altering distances on dislocated metric spaces, Proc. EIIC (2014) 403–409.

A. Latif, H. Isik, A.H. Ansari, Fixed points and functional equation problems via cyclic admissible generalized contractive type mappings, J. Nonlinear Sci. Appl. 9 (2016) 1129–1142.

A.A. Hazaymeh, A. Bataihah, Neutrosophic fuzzy metric spaces and fixed points for contractions of nonlinear type,Neutrosophic Sets Syst. 77 (2024).

Downloads

Published

2026-02-02

How to Cite

Anwar Bataihah, Arslan Hojjat Ansari, Ayman Hazaymeh, & , S. H. J. P. (2026). Fixed point results in neutrosophic fuzzy metric spaces for contractions based on C-class functions. Results in Nonlinear Analysis, 8(4), 97–108. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/588