On shrinkage estimators for Pareto II parameters for complete data


Keywords:
Bayes estimator, Lomax Distribution, Pareto DistributionType II, Maximum Likelihood Method, Monte Carlo simulation, Shrinkage Estimation, Mean Square Error.Abstract
Many different fields have found extensive use for the Pareto distributionType II. The Maximum Likelihood Method (ML), and Bayeswill all be used in this study to estimate the parameters of the Pareto distributionType II. Next, we will attempt to determine the parameter’s first shrinkage estimator for the estimators of the techniques we are investigating. This study’s primary goal is to provide two initial shrinkage estimator comparisons between two estimators: First, there is a shrinkage estimator between the maximum likelihood and the Bayes estimators; second, there is a shrinkage estimator between the first shrinkage estimator and the Bayes estimator. The performance of these estimators was examined using Monte Carlo simulation in order to determine which, as measured by the MSE criterion, one is the best.
References
Abd Ali, M. H., Jiheel, A. K., & Al-Hemyar, Z. (2022). Two-stage shrinkage Bayesian estimators for the shape parameter of Pareto distribution dependent on Katti’s regions. Iraqi Journal for Computer Science and Mathematics, 3(2), 42–54. https://doi.org/10.52866/ijcsm.2022.02.01.005
Abdullah, M., Iqbal, Z., Ali, A., Zakria, M., & Ahmad, M. (2016). Size biased Lomax distribution. 23, 32–49.
Abujarad, M. H., & Khan, A. A. (2021). Bayesian survival analysis of Lomax family models with Stan (R). Journal of Modern Applied Statistical Methods, 19(1), Article 12. https://doi.org/10.22237/jmasm/1608553800
Alkutubi, H., & Ibrahim, N. K. (2009). Comparison of three shrinkage estimators of parameter exponential distribution. International Journal of Applied Mathematics, 22(5), 785–792.
Hamad, A. M. (2013). Double stage shrinkage estimator of two parameters generalized exponential distribution. International Mathematical Forum, 8(23), 1143–1153. http://dx.doi.org/10.12988/imf.2013.3351
Hadi, S., & Salih, S. (2010). Bayes estimator for the reliability function of the Pareto model of Type I failure. Journal of Economics and Administrative Sciences, 16(57), 145. https://doi.org/10.33095/jeas.v16i57.1434
Harris, C. M. (1968). The Pareto distribution as a queue service discipline. Operations Research, 16(2), 307–313. https://doi.org/10.1287/opre.16.2.307
Hassan, A., & Al-Ghamdi, A. (2009). Optimum step-stress accelerated life testing for Lomax distribution. Journal of Applied Sciences Research, 12, 2153–2164.
Holland, O., Golaup, A., & Aghvami, A. H. (2006). Traffic characteristics of aggregated module downloads for mobile terminal reconfiguration. IEE Proceedings: Communications, 153(5), 683–690. https://doi.org/10.1049/ip-com:20045155
Khan, N., Khalil, A., & Rehman, A. (2023). A new extended generalized Pareto distribution: Its properties and applications. Journal of Xi’an Shiyou University, Natural Science Edition, 19(6), 171–190.
Labban, J. A. (2019). On 2-parameter estimation of Lomax distribution. Journal of Physics: Conference Series, 1294(3), 1–5. https://doi.org/10.1088/1742-6596/1294/3/032018
Mitra, D., Kundu, D., & Balakrishnan, N. (2021). Likelihood analysis and stochastic EM algorithm for left truncated right censored data and associated model selection from the Lehmann family of life distributions. Japanese Journal of Statistics and Data Science, 4(2), 1019–1043. https://doi.org/10.1007/s42081-021-00115-1
Rahim, R. (2024). Adaptive Algorithms for Power Management in Battery-Powered Embedded Systems. SCCTS Journal of Embedded Systems Design and Applications, 1(1), 20-24.
Para, B. A., & Jan, T. R. (2018). On three parameter weighted Pareto Type II distribution: Properties and applications in medical sciences. Applied Mathematics & Information Sciences Letters, 6(1), 13–26. https://doi.org/10.18576/amisl/060103
Pareto, V. (1897). The new theories of economics. Journal of Political Economy, 5(4), 485–502
Pels, W. A., Adebanji, A. O., Twumasi-Ankrah, S., & Minkah, R. (2023). Shrinkage methods for estimating the shape parameter of the generalized Pareto distribution. Journal of Applied Mathematics, 2023. https://doi.org/10.1155/2023/9750638
Prakash, G. (2010). Shrinkage estimation in the inverse Rayleigh distribution. Journal of Modern Applied Statistical
Methods, 9(1), 209–220. https://doi.org/10.22237/jmasm/1272687540
Muralidharan, J. (2024). Machine Learning Techniques for Anomaly Detection in Smart IoT Sensor Networks. Journal
of Wireless Sensor Networks and IoT, 1(1), 10–14.
Salman, A. N., & Hamad, A. M. (2019). On estimation of the stress-strength reliability based on Lomax distribution. IOP Conference Series: Materials Science and Engineering, 571(1), 1–7. https://doi.org/10.1088/1757-899X/571/1/012038
Salman, A. N., & Hussein, A. A. (2016). Single stage shrinkage estimator for the shape parameter of the Pareto distribution. International Journal of Mathematics Trends and Technology, 35(3), 156–162. https://doi.org/10.14445/22315373/IJMTT-V35P521
Sharma, V. K., Singh, S. K., & Singh, U. (2017). Classical and Bayesian methods of estimation for power Lindley distribution with application to waiting time data. Communications for Statistical Applications and Methods, 24(3), 193–209. https://doi.org/10.5351/CSAM.2017.24.3.19