Derivation of Sawada-Kotera and Kaup-Kupershmidt equations KdV Flow Equations from Derivative Nonlinear Schrödinger Equation (DNLS)


Abstract views: 0 / PDF downloads: 0

Authors

  • Murat Koparan Anadolu Üniversitesi

Keywords:

Multiple scales method, Sawada-Kotera equation, Kaup-Kupershmidt equation, DNLS type equations

Abstract

The mathematical models of problems that arise in almost every branch of science are nonlinear equations of evolution (NLEE). In the past years, equations of formation have gained a significant place in applied mathematics. This study is about the multiple scales method, known as the perturbation method, for the derivative nonlinear Schrödinger (DNLS) equation. In this report, the multiple scales method was applied for the analysis of the derivative nonlinear Schrödinger (DNLS) equation. And (1 + 1) dimensional fifth-order nonlinear Korteweg-de Vries (fKdV) type equations were obtained. So, we have demonstrated the relationship between the KdV equations and the DNLS-type equation.

References

G.P. Agrawal. Nonlinear Fiber Optics (third ed.). Academic, New York,2001.

R.S. Johnson. On the modulationof water waves in the neighbourhood of kh 1:363. Proc. Roy. Soc. London Ser. A, 1997, 357; 131-141.

D.J.Benney. A general theory for interactions between short and long waves. Studies in Apply. Math., 1976, 57; 81-94.

T. Kakutani, K. Michihiro. Marginal state of modulational instability-mode of Benjamin Feir instability. J. Phys. Soc. Japan,1983, 52; 4129-4137.

E.J. Parkes. The modulation of weakly non-linear dispersive waves near the marginal state of instability. J. Phys. A, 1987, 20; 2025-2036.

R. Ndohi, T.C. Kofane. Solitary waves in ferromagnetic chains near the marginal state of instabilit. Phys. Lett. A, 1991, 154; 377-380.

F.B. Pelap, M.M. Faye. Solitonlike excitations in a one-dimensional electrical transmission line. J. Math. Phys., 2005, 46; 513-525.

S. Yu. Sakovich. Integrability of the higher order NLS revisited. Arxiv/nlin.SI/9906012.

A.S. Kindyak, M.M. Scott, C. E. Patton. Theoretical analysis of nonlinear pulse propagation in ferritedielectric-metal structures based on the nonlinear Schrödinger equation with higher order terms. J. Appl. Phys., 2003, 93; 4739-4745.

Y. Zarmi. Perturbed NLS and asymptotic integrability. Arxiv/nlin.SI/0511057.

A. Rogister. Parallel propagation of nonlinear low-frequency waves in highplasma. Phys. Fluids, 1971, 14; 2733-2739.

M.S. Ruderman, J. Plasma Phys, 2002, 67; 271-276.

D. J. Kaup, A. C. Newell, An exact solution for a derivative nonlinear Schr[o-umlaut]dinger equation, J. Math. Phys., 1978, 19; 798801.

A. Nakamura, H. H. Chen, Multi-soliton solutions of a derivative nonlinear Schrödinger equation, J. Phys. Soc. Jpn. 1980, 49; 813-816.

N. N. Huang, Z. Y. Chen, Alfvén solitons. J. Phys. A, 1990, 23; 439-453 .

H. Steudel, The hierarchy of multi-soliton solutions of the derivative Schrödiger equation, J. Phys. A: Math. Gen., 2003, 36; 1931-1946.

A. Kundu, J. Phys. A. 1988, 25; 945-953.

T. Kawata, H. Inoue, Exact solutions of the derivative nonlinear Schroedinger equation under the nonvanishing conditions, J. Phys. Soc. Jpn. 1978, 44; 1968-1976.

T. Kawata, N. Kobayashi, H. Inoue, J. Phys. Soc. Jpn. 1979, 46; 1008-1015.

Y. Khan, N. Faraz, A new approach to di¤erential di¤erence equations, Journal of Advanced Research in Di¤erential Equations, 2010, 2; 1-12.

Y. Khan, An e¤ective modification of the Laplace decomposition method

for nonlinear equations, International Journal of Nonlinear Sciences and

Numerical Simulation, 2009, 10; 1373-1376.

Y. Khan, Q. Wu, Homotopy perturbation transform method for nonlinear equations using Hes polynomials, Computers & Mathematics with Applications, 2011, 61; 1963-1967.

Zakharov, V., Kuznetsov, E. A., 1986, Multiscale expansions in the theory of systems integrable by the inverse scattering transform, Physica D,18, 455-63.

Calegora F, Degasperis A, Xiaosdo Ji., 2000, Nonlinear Schrödinger-typeequations from multiscale reduction of PDEs I. Systematic derivation. J Math Phys, 41,9,6399443.

Degasperis A, Manakov SV, Santini PM., 1997, Multiple-scale perturbation beyond nonlinear Schrödinger equation I. Physica D, 100, 187-211.

Osborne AR, Bo¤etta G.,1989, The shallow water NLS equation in Lagrangian coordinates. Phys Fluid A,7,1,1200-10.

Osborne AR, Bo¤etta G. A, summable multiscale expansion for the KdV equation. In: Degasperis A, Fordy A,P, Lakshmanan M, editors, Nonlinear evolution equations: integrability and spectral methods, MUP, Manchester and New York, 1991, 559-71.

A. Maccari, The Kadomtsev-Petviashvili equation as a source of integrable model equations, J. Math. Phys. 1996, 37; 6207-6212.

A. Maccari, A generalized Hirota equation in 2+1 dimensions, J. Math. Phys. 1998, 39; 6547-6551.

A. Maccari, Weak Lax pair formulation for a new integrable nonlinear equation in 2+1 dimensions, Nonlinearity, 2002, 15; 807-815.

P. D. Lax.Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. ,21(1968):467-490 .

K. Sawada, and T. Kotera.A method of for nding N-soliton solutions of the KdV and KdV-like equation, Prog. Theor. Phys. 51(1974):1355-1367.

M. Ito.An extension of nonlinear evolution equations of the KdV(mKdV) type to higher orders.J. Phys. Soc. Japan, 49(1980):771-778.

M. Ito.A REDUCE program for nding symmetries of nonlinear evolution equations with uniform rank. Comp. Phys. Comm., 42(1986):351-357.

A. P. Fordy and J. Gibbons. Some remarkable nonlinear transformations.Phys. Lett., 75 A(1980):325-334.

J. Satsuma, and D.J. Kaup.A Backlund transformation for a higher order Korteweg-de Vries equation. J. Phys. Soc. Japan.43(1977):692-697.

D. Kaup.On the inverse scattering problem for cubic eingevalue problems of the class uxxx + 6qux + 6ru =?u. Stud. Appl. Math., 62(1980):189-216.

B. A. Kupershmidt.A super Korteweg-de Vries equation: an integrable system. Phys. Lett. 102 A(1984): 213-215.

M. Jimbo and T. Miwa.Solitons and infinite-dimensional Lie algebras. Publ. RIMS, Kyoto Univ., 19(1983):943-1001.

A.M.Wazwaz. The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Appl. Math. Comp., 84(2) (2007): 1002-1014.

A. H. Salas. Some solutions for a type of generalized Sawada-Kotera equation.Applied Mathematics and Computation, 196(2008):812-817.

Downloads

Published

2025-01-17

How to Cite

Koparan, M. (2025). Derivation of Sawada-Kotera and Kaup-Kupershmidt equations KdV Flow Equations from Derivative Nonlinear Schrödinger Equation (DNLS). Results in Nonlinear Analysis, 8(1), 32–40. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/540