Blow-up solutions of a system of nonlinear the Klein-Gordon-Fock Type wave equations
Abstract views: 0 / PDF downloads: 0
Keywords:
Nonlinear generalized Klein-Gordon type equations, blow-up, Dirichlet’s boundary conditions.Abstract
We consider the initial boundary value problem for a system of strongly damped wave equations with homogeneous Dirichlet boundary conditions and a nonlinear source term. By applying a modification of the concavity method, we demonstrate that the solutions blow up for $p<3$ with arbitrary positive initial data. Furthermore, we show that the global solvability of the problem for
$p\geq 3$.
References
Aviles P, Sandefur J. Nonlinear second order equations with applications to partial differential equations, J. Differential Equations 1985; 58, 40427.
Beckenbach EF. Bellman R. An Introduction to Inequalities, Berlin, Springer, 1961.
Bilgin BA, Kalantarov VK. Blow up of solutions to the initial boundary value problem for quasilinear strongly damped wave equations. Journal of Mathematical Analysis and Applications 2013; 403: 89-94.
Bilgin BA, Kalantarov VK. Non-existence of global solutions to nonlinear wave equations with positive initial energy, Communications on Pure and Applied Analysis 2018; 17, 3: 987-999.
Castro NO. Existence and asymptotic behavior of solutions of a nonlinear evolution problem, Applications of mathematics 1997,6: 411-420.
Clark MR, Clark HR, Lima OA. On a nonlinear coupled system, International Journal of Pure and Applied Mathematics 2005; 20, 1: 81-95.
De Brito EH. Nonlinear initial-boundary value problems, Nonlinear Anal.1987, 11,125-137.
Dubinskii Yu A. Mat.Sb.,n.s,1965; 67(109): 609-642.
Evans LC. Partial Differential Equations. American Mathematical Society 19. Providence, Rhode Island, 1998.
Gazzola F, Squassina M. Global solutions and finite time blow-up for damped semi-linear wave equations, Ann. I. H. Poincare AN 23 2006; 185-207.
Georgiev V, Todorova G. Existence of solution of the wave equation with nonlinear damping and source terms, J. Diff. Eq.1994; 107: 295-308.
Han X, Wang M. Global existence and blow-up of solutions for a system of nonlinear viscoelastic wave equations with damping and source, Nonlinear Analysis 2009; 71:5427-5450.
Jakubov SJ. Solvability of the Cauchy problem for abstract quasilinear hyperbolic equations of second order and their applications, Trans. Moscow Math. Soc.1970; 23:36-59.
Kalantarov VK, Ladyzhenskaya OAJ.The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type. Journal of Soviet Mathematics.1978. 10: 53-C70.
Korpusov MO. Blow-up of the solution of a nonlinear system of equations with positive energy, TMF, 2012;171, 3: 355-369.
Korpusov MO. A blow-up of solutions of strongly dissipative generalized Klein-Gordon equations, Izv.Math 2013; 77 (2): 325-C353.
Korpusov MO, Ovchinnikov AV, Sveshnikov AG, Yushkov EV. Blow-up in Nonlinear Equations of Mathematical Physics. De Gruyter Ser. Nonlinear Anal. Appl 27. Berlin:De Gruyter,2018.
Lakshmikantham V, Gadas GE. Differential Equations in Abstract Spaces. Elsevier 85, 1972.
Levine HA. Instability and nonexistence of global solutions to nonlinear wave equations of the form P utt + Au = F (u), Trans. Amer. Math. Soc.,1974; 192: 1-21.
Levine HA. Some additional remarks on the nonexistence of global solutions to non-linear wave equations, SIAM J. Math. Anal.1974; 5: 138-146.
Levine HA, Todorova G. Blow-up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy.Proc.Amer. Math. Soc.2003; 129: 793-C805.
Lima OA, Lourdo AT, Marinho AO. Weak solutions for a strongly-coupled nonlinear system, Electronic J.Differential Equations 2006;130,1-18.
Lions JL. Quelquesmethodes de resolution des problemes aux limites non lineaires,Gauthier-Villars,Paris,1969.
Medeiros LA, Miranda MM. Weak Solutions for a system of nonlinear Klein Gordon equations.Annali Di Matematica Pura ed Applicata IV (CXLVI): 173-183.
Medeiros LA, Perla Menzela G. On a mixed problem for a class of nonlinear Klein Gordon Equations, Acta Math, Hung,1988;52(1-2):61-69.
Milla Miranda M, Medeiros LA. On the Existence of Global Solutions of a Coupled Nonlinear Klein-Gordon Equations, Funkcialaj Ekvadoj,1987; 30:147-161.
Polat, M. (2019) A blow-up result for nonlocal thin-film equation with positive initial energy, .Turkish Journal of Mathematics: Vol. 43: No. 3, Article 52.
Polat N, Kaya D. Existence, Asymptotic Behaviour, and Blow-up of Solution for a class of Nonlinear Wave Equations with Dissipative and Dispersive Term, Z. Natur- forsch, 64a,2009; 1-12.
Sattinger, DH. On global solutions of nonlinear hyperbolic equations, Arch. Rational Mech. Anal.1968; 30 : 148-172.
Temam R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Ap- plied Mathematical Sciences 68. New York, Springer, 1997.
Tsutsumi M. On solutions of semilinear differential equations in a Hilbert space, Math. Japon 1972; 17: 173-193.
Wang S, Chen G. Cauchy problem of the generalized double dispersion equation, Nonlinear Anal. 2006; 64: 159-173.
Yadong S. Initial boundary value problem of equation utt − ∆u − ∆ut − ∆utt = f (u) Acta Math. Appl. Sinica, 2000.
Ye Y, Li L. Global solutions and blow up for a class of strongly damped wave equations systems, Front.Mat.China 2022,17(5):767-782.
Adams, R. A., Fournier, J.J.F. (2003). Sobolev spaces. Academic Press, 320, New York.
Brezis, H. (2010). Functional analysis, Sobolev spaces and partial differential equa- tions. Springer, 600, New York
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Results in Nonlinear Analysis
This work is licensed under a Creative Commons Attribution 4.0 International License.