Some Novel Results on (α, β)-Ricci-Yamabe Soliton and its Spacetime


Abstract views: 56 / PDF downloads: 37

Authors

  • Kamakshi Sharma Lovely Professional University Phagwara India
  • Pankaj Pandey Lovely Professional University, Phagwara Punjab
  • Amit Kumar Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), Pune

Abstract

This article aims to investigate the characteristics of $(\alpha,\beta)$-Ricci-Yamabe Soliton (briefly: $(\alpha,\beta)-(RYS)_n$) and its spacetime. The inclusion of killing vector field and the Lorentzian metrics make the Ricci-Yamabe soliton richer and interesting. We study the cosmological and dust fluid model on $(RYS)_4$ equipped with Lorentzian para Sasakian $(LPS)_4$ spacetime. The cases of $\eta$-parallel Ricci tensor and the Poisson structure have been studied on $(RYS)_n$ equipped with $(LPS)_n$ manifold. Gradient $(RYS)_n$ equipped with $(LPS)_n$ manifold also reveal. Finally, we establish an example of four-dimensional LP-Sasakian manifold $(LPS)_4$ that satisfy $(\alpha,\beta)-(RYS)_4$ and some results.

References

M. Ali and Z. Ahsan: Ricci solitons and symmetries of spacetime manifold of general relativity, Journal of Advanced

Research on Classical and Modern Geometries, 1(2), (2014), 75–84.

A.M. Blaga: Some geometrical aspects of Einstein, Ricci and Yamabe solitons, J. Geom. Symmetry Phys., (52), (2019),

–26.

A.M. Blaga: Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math., 50(1), (2020),

–53. DOI: doi.org/10.1216/rmj.2020.50.41

R. Buring, D. Lipper and A.V. Kiselev: The hidden symmetry of Kontsevich’s graph flows on the spaces of

Nambu-determinant Poisson brackets, Open Communications in Nonlinear Mathematical Physics (OCNMP), 2, (2022),

–215. DOI: doi.org/10.46298/ocnmp.8844

B.B. Chaturvedi, P. Bhagat, M.N.I. Khan, T. Rana and R.K. Mishra: Proposed theorems on a Lorentzian Kähler spacetime manifold admitting Bochner curvature tensor, Results in Nonlinear Analysis, 6(4), (2023), 140–148.

B.B. Chaturvedi, K.B. Kaushik, P. Bhagat and M.N.I. Khan: Characterization of solitons in a pseudo-quasi-conformally flat and pseudo W8

flat Lorentzian Kahler space-time manifolds, AIMS Mathematics, 9(7), (2024), 19515–

DOI: doi.org/10.3934/math.2024951

B.B. Chaturvedi and P. Pandey: Some Examples on Weak Symmetries, General Mathematics Notes, 29(1), (2015),

–66.

R.S. Chaudhary and B. Pal: On gradient Ricci soliton space-time warped product, Afrika Matematika, 34(3), (2023),

–37.

S.K. Chaubey and U.C. De: Three-dimensional Riemannian manifolds and Ricci solitons, Quaestiones Mathematicae,

, (2022), 667–825.

S. Chidananda and V. Venkatesha: Yamabe soliton and Riemann soliton on Lorentzian para-Sasakian manifold,

Commun. Korean Math. Soc., 37, (2022), 213–228.

D. De: Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton, Korean J. Math., 29(3), (2021), 547–554.

DOI: doi.org/10.11568/kjm.2021.29.3.547

U.C. De, S.K. Chaubey and S. Shenawy: Perfect fluid spacetimes and Yamabe solitons, J. Math. Phys., 62, (2021).

DOI: doi.org/10.1063/5.0033967.

K. De, and U.C. De: A note on almost Ricci soliton and gradient almost Ricci soliton on para-Sasakian manifolds,

Korean J. Math., 28(4), (2020) 739–751. DOI: doi.org/10.11568/kjm.2020.28.4.739

K. De, U.C. De, A.A. Syied, N.B. Turki and S. Alsaeed: Perfect fluid spacetimes and gradient solitons, Journal of

Nonlinear Mathematical Physics, 29, (2022), 843–848.

U.C. De, C.A. Mantica and Y. Suh: Perfect fluid spacetimes and gradient solitons, Filomat, 36(3), (2022), 829–842.

U.C. De, A. Sardar and K. De: Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds, Turkish Journal of

Mathematics, 46(3), (2022), 1078–1088.

S. Deshmukh and B.Y. Chen: A note on Yamabe solitons, Balk. J. Geom. Its Appl., 23, (2018), 37–43.

D. Ganguly, S. Dey, A. Ali and A. Bhattacharyya: Conformal Ricci soliton and quasi-Yamabe soliton on generalized

Sasakian space form, J. Geom. Phys., 169, (2021), 104–339.

S. Guler and M. Crasmareanu: Ricci–Yamabe maps for Riemannian flows and their volume variation and volume

entropy, Turkish Journal of Mathematics, 46(5), (2019), 2631–2641.

R.S. Hamilton: Three-manifolds with positive Ricci curvature, Journal of Differential Geometry, 17, (1982), 255–306.

A. Haseeb and S.K. Chaubey: Lorentzian para Sasakian manifolds and *Ricci solitons, Kragujevac Journal of

Mathematics, 48(2), (2024), 167–179.

A. Haseeb, S.K. Chaubey and M.A. Khan: Riemannian 3-manifolds and Ricci-Yamabe solitons Int. J. Geom. Methods

Mod. Phys., 20, (2023), 2350015. DOI: doi.org/10.1142/S0219887823500159.

A. Haseeb and R. Prasad: Certain results on Lorentzian para-Kenmotsu manifolds, Bol. Soc. Parana. Mat., 39, (2021),

–220.

A. Haseeb, R. Prasad, S.K. Chaubey and A.T. Vanli: A note on *-conformal and gradient *-conformal η-Ricci solitons

in a-cosymplectic manifolds, Honam Math. J. 44, (2022), 231–243.

A. Haseeb, R. Prasad and F. Mofarreh: Sasakian manifolds admitting *η-Ricci-Yamabe solitons, Adv. Math. Phys.,

, (2022), 5718736. DOI: doi.org/10.1155/2022/5718736

A. Haseeb, M. Bilal, S.K. Chaubey and A.A.H. Ahmadini: zeta-Conformally flat LP-Kenmotsu manifolds and Ricci–

Yamabe solitons, Mathematics, 11(1), 212, (2023). DOI: doi.org/10.3390/math11010212

D. Kar, and P. Majhi: Beta-almost Ricci solitons on almost CoKahler manifolds, Korean J. Math., 27(3), (2019),

–705. DOI: doi.org/10.11568/kjm.2019.27.3.691

S. Kundu: Para-Kenmotsu metric as a η-Ricci soliton, Korean J. Math., 29(2), (2021), 445–453. DOI: doi.org/10.11568/

kjm.2021.29.2.445

S.D. Lee, B.H. Kim, and J.H. Choi; On a classification of warped product spaces with gradient Ricci solitons, Korean J.

Math. 24(4), (2016), 627–636. DOI: doi.org/10.11568/kjm.2016.24.4.627

Y. Li, A. Haseeb and M. Ali: LP-Kenmotsu manifolds admitting η-Ricci solitons and spacetime, J. Math., 2022, (2022),

DOI: doi.org/10.1155/2022/6605127

B. Pal and R.S. Chaudhary: An introduction to gradient solitons on statistical Poisson manifold and perfect fluid

Poisson manifold, Journal of Geometry and Physics, 195, (2024), 105039.

P. Pandey: On weakly cyclic generalized Z-symmetric manifolds, National Academy Science Letters, 43(04), (2020),

–350.

P. Pandey: Study of Kahler Structure on 4-dimensional Space-time, Differential Geometry-Dynamical System, 24,

(2022), 157–163.

P. Pandey and B.B. Chaturvedi: On a Lorentzian complex space form, National Academy Science Letters, 43(4), (2020),

–353.

P. Pandey and K. Sharma: Ricci Soliton Admitting Generalized Z-tensor on Sasakian 3-Manifold, AIP: Conference

Proceedings, 3087-060001, (2024). DOI: doi.org/10.1063/5.0199390.

P. Pandey and K. Sharma: Some Results on Ricci Soliton on Contact Metric Manifolds, Facta Universitatis: Mathematics

and Informatics, 38(3), (2023), 473–486.

G.P. Pokhariyal and S.K. Chaubey: Study of P-curvature tensor in the spacetime of general relativity, Honam

Mathematical J., 45(2), (2023), 316–324. DOI: doi.org/10.5831/HMJ.2023.45.2.316

A. Sardar and U.C. De: Characterizations of GRW spacetimes admitting Ricci-Yamabe solitons, International Journal

of Geometric Methods in Modern Physics, 2440002, (2023). DOI: doi.org/10.1142/S0219887824400024

A. Sardar and A. Sarkar: Ricci-Yamabe solitons and gradient Ricci-Yamabe solitons on Kenmotsu 3-manifolds,

Kyungpook Math. J., 61, (2021), 813–822.

A. Sarkar, and P. Bhakta: Certain solitons on generalized (κ, µ) contact metric manifolds, Korean J. Math., 28(4),

(2020) 847–863. DOI: doi.org/10.11568/kjm.2020.28.4.847

M. D. Siddiqi: Ricci r-soliton and geometrical structure in a dust fluid and viscous fluid sapcetime, Bulg. J. Phys. 46,

(2019), 163–173.

M.D. Siddiqi and U.C. De: Relativistic perfect fluid spacetimes and Ricci-Yamabe solitons, Letters in Mathematical

Physics, 112(1), (2022). DOI: 10.1007/s110 05-021-01493-z

M.D. Siddiqi and S. A. Siddqui: Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J.

Geom. Methods Mod. Phys. 17 (2050083), (2020). DOI: https://doi.org/10.1142/S0219887820500838

A. Vishwas, A. Das, K.K. Baishya and M.R. Bakshi: η-Ricci solitons on Kenmotsu manifolds admitting general connection, Korean J. Math., 28(4), (2020), 803–817. DOI: https://doi.org/10.11568/kjm.2020.28.4.803

S.K. Yadav, S.K. Chaubey and S.K Hui: On the perfect fluid Lorentzian para-Sasakian spacetimes, Bulg. J. Phys., 46,

(2019), 1–15.

Y.J. Suh and S.K. Chaubey: Ricci solitons on general relativistic spacetimes, Physica Scripta, 98(6), (2023), 065207.

DOI: 10.1088/1402-4896/accf41

P. Zhang, Y. Li, S. Roy, S. Dey and A. Bhattacharya: Geometrical structure in a perfect fluid spacetime with conformal

Ricci-Yamabe soliton, 14(3), 594, (2022). DOI: doi.org/10.3390/sym14030594

Downloads

Published

2024-12-02

How to Cite

Sharma, K., Pankaj Pandey, & Amit Kumar. (2024). Some Novel Results on (α, β)-Ricci-Yamabe Soliton and its Spacetime. Results in Nonlinear Analysis, 7(4), 132–145. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/512