Fixed point theorems of suzuki-type contractions in s-metric spaces with ternary relation and applications


Abstract views: 47 / PDF downloads: 75

Authors

  • M. V. R. Kameswari Department of Mathematics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, 531045, Andhra Prades
  • Alla Bharathi Department of Basic Sciences and Humanities, RAGHU College of Engineering(A), Dakamarri, Bheemunipatnam Mandal, Visakhapatnam, 53116
  • Zoran Mitrovic University of Banja Luka, Faculty of Electrical Engineering, Patre 5, Banja Luka, 78000, Bosnia and Herzegovina
  • Sarah Aljohani Department of Mathematics and Sciences, Prince Sultan University, Riyadh, 1158
  • Ahmad Aloqaily Department of Mathematics and Sciences, Prince Sultan University, Riyadh, 1158
  • Nabil Mlaiki Department of Mathematics and Sciences, Prince Sultan University, Riyadh, 1158

Keywords:

S-metric spaces; fixed points; numerical methods; Suzuki-type contractions; ternary relations; nonlinear matrix equation.

Abstract

In this paper we dene a new class of Suzuki-type contractions and prove some results on xed points in S-metric spaces with ternary relation. As an application of our results, we prove the existence of solutions for some classes of nonlinear matrix equations and provide a convergence analysis. Also, our results generalize recent results from the literature.

References

A. Alam, M. Imdad, Relation theoretic metrical coincidence theorems, Filomat, 31 (2017), 4421–4439.

M. A. Alghamdi, O. S. Gulyaz, E. Karapınar, E. A note on extended Z-contraction, Mathematics, 8(2020), 195.

M. Asadi, M. Azhini, E. Karapnar, H. Monfrared, Simulation Function over M-Metric Spaces, East Asian Math. J. 33(5),(2017). 559–570.

M. Asadi, M. Gabeleh, C. Vetro, A New Approach to the Generalization of Darbo’s Fixed Point Problem by Using Simultation, Functions With Application to Integral Equations, Results Math 74(86), (2019), 15p.

G. V. R. Babu, S. P. Durga, G. Srichandana, Fixed points of almost Suzuki type ZS contractionsin S metric spaces, Mat. Vesn., 74(2022), 130–140.

G. V. R. Babu, S. P. Durga, G. Srichandana, Fixed points of almost generalized ZS contractions with rational expressions in S metric spaces, J. Math. Comput. Sci., 11 (2021), 914–937.

B. K. Dass, S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math., 6 (1975), 1455–1458.

T. Došenović, S. Radenović, A. Rezvani, S. Sedghi, Coincidence point theorems in S metric spaces using inegral type of contraction, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar., 79 (2017), 145–158.

U. C. Gairola, K. Deepak, Suzuki type fixed point theorems in S metric space, Inter. J. Math. Ana. Appl., 5 (2017), 277–289.

M. Hasanuzzaman, M. Imdad, Relation theoretic metrical fixed point results for Suzuki type ZR contraction with an application, AIMS Math., 5 (2020), 2071–2087.

N. T. Hieu, N. T. Ly, N. V. Dung, A generalization of Ćirić quasi-contractions for maps on S-metric spaces, Thai J. Math., 13 (2015), 369–380.

D. S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math., 8 (1977), 223–230.

M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces, AIMS Math., 8 (2023), 4407–4441.

F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study fixed point theorems via simulation functions, Filomat, 29 (2015), 1189–1194.

P. Kumam, D. Gopal, L. Budhiyi, A new fixed point theorem under Suzuki type Z-contraction mappings, J. Math. Anal., 8 (2017), 113–119

R. M. Kumar, B. Singh, A novel approach to G metric spaces by using ternary relation, Internat. J. of Pure and Appl. Math. Sci., 14 (2021), 29–38.

N. Mlaiki, N. Y. Ozgur, N. Tas, New fixed point theorems on an S metric space via simulation functions, Mathematics, 583, (2019), 13 p.

N. Mlaiki, U. Celik, N. Y. Tas, N.Ozgur and A. Mukheimer, Wardowski type contractions and the fixed-circle problem on S-metric spaces, J. Math., 2018, Art. ID 9127486, 9 pp.

H. Monfared , M. Asadi, A. Farajzadeh, New Generalization of Darbo’s fixed Point Theorem via α-admissible Simulation Functions with Application, Sahad Communications in Mathematical Analysis 17(2)(2020), 161–17,

N. Y. Ozgur, N. Tas, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc., 42(2019), 1433–1449.

N. Y. Ozgur, N. Tas Fixed-circle problem on S-metric spaces with a geometric viewpoint, Facta Univ., Ser. Math. Inf., 34(2019), 459–472.

N. Priyobarta, Y. Rohen, S. Thounaojam, S. Radenović, Some remarks on α-admissibility in S-metric spaces, J. Inequal. Appl., 14 (2022), 16 p.

A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435–1443.

A. Z. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via Avα-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space, AIMS Math., 8 (2023), 7225–7241.

K. Sawangsup, W. Sintunavarat, On modified Z-contractions and an iterative scheme for solving nonlinear matrix equations, J. Fixed Point Theory Appl., 20 (2018), 80, 19p.

S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesn., 64 (2012), 258–266.

S. Sedghi, M. Rezaee, M. Mahdi, T. Došenović, S. Radenović, Common fixed point theorems for contractive mappings satisfying Φ-maps in S-metric spaces, Acta Univ. Sapientiae, Math., 8 (2016), 298–311.

W. Shatanawi, T. A. M. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Math., 8 (2023), 9314–9330.

T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313–5317.

A. Tomar, N. Tas, M. Joshi, On interpolative type multiple fixed points their geometry and applications on S-Metric spaces, Appl. Math. E-Notes, (23) (2023), 243–259.

L. Wangwe, Common Fixed Point Theorem for multivalued mappings using ternary relation in G metric Space with an application.

Downloads

Published

2025-02-03

How to Cite

M. V. R. Kameswari, Alla Bharathi, Mitrovic, Z., Sarah Aljohani, Ahmad Aloqaily, & Nabil Mlaiki. (2025). Fixed point theorems of suzuki-type contractions in s-metric spaces with ternary relation and applications. Results in Nonlinear Analysis, 8(1), 88–105. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/502