On Number of Ordered Pair of Positive Integers with Given Least Common Multiple


Abstract views: 142 / PDF downloads: 96

Authors

  • Mr. Sajad A. Sheikh University of Kashmir, South Campus, Anantnag-192101, Jammu and Kashmir, India.
  • Dr. Priyabrata Mandal Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

Abstract

In this article, we present an expression for the number of ordered pairs of positive integer $m$ with prime factorization $p_1^{\alpha_1} \cdot p_2^{\alpha_3} \ldots p_n^{\alpha_n}$, and en route introduce an identity viz:
%\begin{equation*}
\begin{align*}
&\prod_{i=1}^n (2 \alpha_i+1) = \sum (\alpha_1+1) \alpha_2 \ldots \alpha_n + \sum (\alpha_1+1)(\alpha_2+1) \alpha_3 \ldots \alpha_n + \\
& \cdots + \sum (\alpha_1+1)(\alpha_2+1) \ldots (\alpha_r+1) \alpha_{r+1} \ldots \alpha_n + \cdots + \alpha_1 \alpha_2 \ldots \alpha_n
\end{align*}
%\end{equation*}
%\medskip

Moreover, we investigate the asymptotic behaviour of the mean and variance of the relative number of order pairs with some given least common multiple $m$. The notion of ordered pair is widely used in the fields of geometry, statistics, computing and programming languages.

Author Biographies

Mr. Sajad A. Sheikh, University of Kashmir, South Campus, Anantnag-192101, Jammu and Kashmir, India.

Assistant Professor, Department of Mathematics

Dr. Priyabrata Mandal, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

Assistant Professor, Department of Mathematics 

References

A. Tucker, Applied Combinatorics, Wiley, USA, 2012.

B. Sury, “Lower Bound for the Least Common Multiple,” The American Mathematical Monthly, 126:10 (2019), pp. 940–942, https://doi.org/10.1080/00029890.2019.1651179.

C. Sanna, “On the least common multiple of random q-integers,” Research in Number Theory, 7(1) (2021), Article 16, https://doi.org/10.1007/s40993-021-00242-4.

C. T. Long, Elementary Introduction to Number Theory, Prentice Hall, Englewood Cliffs, NJ, 1987.

D. M. Burton, Elementary Number Theory, 6th ed., Tata McGraw-Hill, 2007.

G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995.

J. Buhler, Cryptography, Cambridge University Press, 2020.

J. O’Rourke, Computational Geometry in C, 2nd ed., Cambridge University Press, 1998.

K. Ford and T. Tao, “The distribution of values of ϕr (n),” American Journal of Mathematics 136 (2014), no. 3, pp. 645–669.

M. Z. Spivey, The Art of Proving Binomial Identities, CRC Press, p. 71, ISBN 1351215809, 2019.

R. C. Vaughan, “On the distribution of αp(n),” Mathematika 51 (2004), no. 1-2, pp. 135–184.

R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, Wiley, New York, 2000.

Downloads

Published

2024-08-22

How to Cite

Sajad A. Sheikh, & MANDAL, P. (2024). On Number of Ordered Pair of Positive Integers with Given Least Common Multiple. Results in Nonlinear Analysis, 7(3), 209–216. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/479