NONLINEAR CONTRACTION MAPPING IN PROBABILISTIC CONTROLLED GENERALIZED METRIC SPACES


Abstract views: 3 / PDF downloads: 1

Authors

  • Abderrahim MBARKI
  • Mohammed Elberkani ANO Laboratory, Faculty of Sciences, Mohammed First University, Oujda, Morocco.

Keywords:

Probabilistic controlled generalized metric spaces, Hausdorff condition, nonlinear contractions, Fixed point

Abstract

This paper presents a new framework referred to as "probabilistic
controlled generalized metric spaces," extending the theory of probabilistic metric
spaces. The aim is to examine the correlation between this innovative class and the
traditional axioms of probabilistic metric spaces. Moreover, the paper delves into
proving the existence of fixed points for the }-probabilistic contraction mapping,
even without the presence of the Hausdorff condition. The paper will also feature
illustrative examples to underscore the practicality and efficacy of the theories and
methodologies presented.

References

Achtoun, Y., Sefian, M. L., & Tahiri, I., (A, B) – w-contraction mappings in menger spaces. Results in Nonlinear

Analysis, 6 (3), (2024), 97–106.

EL-amrani, M., Mbarki, A., & Mehdaoui, B., Nonlinear contractions and semigroups in general complete probabilistic

metric spaces. PanAmerican Mathematical Journal, 11 (4), (2001), 79–87.

Hicks, T. L., Fixed point theory in PM spaces. Rev. Resh. Novi Sad, 13, (1983), 63–72.

Hadzić, O., Fixed point theorems for multivalued mappings in probabilistic metric spaces. Fuzzy Sets and Systems,

, (1997), 219–226.

Mbarki, A., & Jamal, Hlal., Weakly-H contraction fixed point theorem in b-menger spaces. International Journal of

Applied Mathematics, 35 (2), (2022), 225–232.

Mbarki, A., & Naciri, R., Probabilistic generalized metric spaces and nonlinear contractions. Demonstratio Mathematica,

(4), (2016), 437–452.

Mbarki, A., & Oubrahim, R., Probabilistic b-metric spaces and nonlinear contractions. Fixed Point Theory and

Applications, 2017 (1), (2017), 29.

Mbarki, A., & Oubrahim, R., Common fixed point theorems in b-Menger spaces. In Recent Advances in Intuitionistic

Fuzzy Logic Systems: Theoretical Aspects and Applications, (2019), (pp. 283–289).

Mbarki, A., & Oubrahim, R., Common fixed point theorem in b-menger spaces with a fully convex structure.

International Journal of Applied Mathematics, 32 (2), (2019), 219.

Mbarki, A., & Oubrahim, R., Probabilistic j-contraction in b-menger spaces with fully convex structure. International

Journal of Applied Mathematics, 33 (4), (2020), 621.

Mbarki, A., & Oubrahim, R., Some properties of convexity structure and applications in b-Menger spaces. In

Mathematical and Computational Methods for Modelling, Approximation and Simulation, (2022), (pp. 181–189).

Mbarki, A., & Oubrahim, R., Fixed point theorem satisfying cyclical conditions in-Menger spaces. Moroccan Journal

of Pure and Applied Analysis, 5 (1), (2019), 31–36.

Oubrahim, R., Naciri, R., & Mbarki, A., Fixed point theorems in generalized b-Menger spaces. Results in Nonlinear

Analysis, 7 (1), (2024), 35–43.

Menger, K., Statistical metrics. Proc. Nat. Acad. Sci., 28, (1942), 535–537.

Saadati, R., Sedghi, S., & Shobe, N., Modified intuitionistic fuzzy metric spaces and some fixed point theorems. Chaos,

Solitons & Fractals, 38, (2006), 36–47.

Schweizer, B., & Sklar, A., Statistical metric spaces. Pacific J. Math., 10, (1960), 313–334.

Schweizer, B., & Sklar, A., Probabilistic Metric Spaces. North-Holland Series in Probability and Applied Mathematics,

, (1983).

Sehgal, V. M., Some fixed point theorems in functional analysis and probability (Doctoral dissertation, Wayne State

University), (1966).

Sehgal, V. M., & Bharucha-Reid, A. T., Fixed points of contraction mappings on PM-spaces. Math. Syst. Theory, 6,

(1972), 97–102.

O’Regan, D., & Saadati, R., Nonlinear contraction theorems in probabilistic spaces. Appl. Math. Comput., 195, (2008),

–93.

Šerstnev, A. N., The triangle inequalities for random metric spaces. Kazan. Gos. Univ. Učen. Zap., 125, (1965), 90–93.

Šerstnev, A. N., On the probabilistic generalization of metric spaces. Kazan. Gos. Univ. Učen. Zap., 124, (1967),

–119.

Wald, A., On a statistical generalization of metric spaces. Proc. Nat. Acad. Sci. U. S. A., 29, (1943), 196–197.

Downloads

Published

2024-11-18

How to Cite

MBARKI, A. ., & Mohammed Elberkani. (2024). NONLINEAR CONTRACTION MAPPING IN PROBABILISTIC CONTROLLED GENERALIZED METRIC SPACES. Results in Nonlinear Analysis, 7(4), 35–44. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/468

Most read articles by the same author(s)