Second Bounded Variation in the Sense of Shiba with Variable Exponent


Keywords:
second bounded variation, variable exponent, ShibaAbstract
In this paper we present the notion of second bounded variation in the sense of Shiba with variable exponent, studying the structure of these functions spaces, showing its basic properties and some inclusion results among them.
References
M. Adispavic, Concept of generalized bounded variation and the theory of Fourier series, Internat. J. Math. & Sci. 9, 2 (1986) 223–244.
J. Appell, J. Banas, N. Merentes, Bounded variation and around, De Gruyter, Boston, Mass, USA. (2014).
R. Castillo, N. Merentes and H. Rafeiro, Bounded variation space with p−Variable, Mediterranean Journal of Mathematics. 11 (2014) 1069–1079.
Ch. J. De La Vallee Poussin, Sur l’integrale de Lebesgue, Trans. Amer. Math. Soc. 16 (1908) 435–501.
J. Gimenez, N. Merentes, E. Pineda, L. Rodriguez, Uniformly bounded superposition operators in the space of second bounded variation functions in the sense of Shiba, Publicaciones en Ciencias y Tecnologia. 10, 2 (2016) 49–58.
C. Jordan, Sur la serie de Fourier, C. R. Acad. Sci. Paris. 2 (1881) 228–230.
O. Mejia, N. Merentes, J. L. Sanchez, The space of bounded p(·)-variation in Wiener’s sense with variable exponent. Advances in Pure Mathematics. 5 (2015) 703–716.
L. Perez, E. Pineda, L. Rodriguez, Some results on the space of bounded second variation functions in the sense of Shiba. Adv. Pure Math. 10 (2020) 245–258.
M. Shiba, On the absolute convergence of Fourier series of functions class ΛpBV, Sci. Rep. Fukushima Univ. 30 (1980) 7–10.
R. G. Vyas, Properties of functions of generalized bounded variation, Mat. Vesnik. 58 (2006) 91–96.
D. Waterman, On the convergence of Fourier series of functions of bounded variation, Studia Math. 44 (1972) 107–117.
N. Wiener, The quadratic variation of a function and its Fourier coefficients, Massachusetts J. Math. 3 (1924), 72–94.
L. C. Young, Sur une generalisation de la notion de variation de pussance pieme bornee au sens de M. Wiener, et sur la convergence des series de Fourier, C. R. Acad. Sci. Paris. 204 (1937) 470–472.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Results in Nonlinear Analysis

This work is licensed under a Creative Commons Attribution 4.0 International License.