SUBCLASSES OF YAMAKAWA-TYPE BI-STARLIKE FUNCTIONS SUBORDINATE TO GEGENBAUR POLYNOMIALS ASSOCIATED WITH QUANTUM CALCULUS
Abstract views: 116 / PDF downloads: 68
Abstract
In this paper, we present a novel class of Yamakawa-type bi-starlike functions. These functions are defined using Gegenbauer polynomials associated with q-calculus. We have derived estimates for the Maclaurin coefficients |a₂| and |a₃| for functions in the Yamakawa-type bi-starlike function class. Additionally, we have solved the Fekete-Szegö problems for functions in this new subclass. By specializing the parameters in our main results, we have obtained several new findings.
References
İ. Aktaş and D. Hamarat, Generalized bivariate Fibonacci polynomial and tmo nem sub-classes oƒ bi-univalent func-
tions, Asian-European Journal of Mathematics. 16(8), (2023), https://doi.org/10.1142/S1793557123501474.
İ. Aktaş and N. Yılmaz, Initial Coefficients Estimate and Fekete−Szegö Problems for Two New Sub-classes of
Bi-Univalent Functions, Konuralp Journal of Mathematics, 10(1), (2022), 138–148.
I. Aldawish, T. Al-Hawary and B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential opera-
tor, Mathematics, 8(5), (2020), 783.
H. Aldweby and M. Darus, A Note On q-Integral Operators, Electronic Notes Discrete Math., 67, (2018), 25–30.
A. Alsoboh, A. Amourah, M. Darus and R. I. A. Sharefeen, Applications of Neutrosophic q–Poisson distribution Series
ƒor Subclass of Analytic Functions and Bi-Univalent Functions, Mathematics, 11, (2023), 868.
A. Alsoboh and M. Darus, On Fekete−Szegö Problems for Gertain Subclasses of Analytic Functions Defined by
Differential Operator Involving q-Ruscheweyh Operator, J. Funct. Space., 2020, (2020), 8459405.
A. Alsoboh and D. Maslina, New subclass of analytic functions defined by q-differential operator with respect to
k-symmetric points, Int. J. Math. Comput. Sci., 1, (2019), 761–773.
OP. Ahuja and A. Cetinkaya, Connecting quantum calculus and harmonic starlike functions, Filomat, 34, (2020),
–1441.
A. Alsoboh, M. Çağlar and M. Buyankara, Fekete−Szegö Inequality for a Subclass of Bi-Univalent Functions Linked
to q-Ultraspherical Polynomials, Contemporary Mathematics, 5(2), (2024), 2366–2380.
A. Amourah, B. A. Frasin, G. Murugusundaramoorthy and T. Al-Hawary, Bi-Bazilevič functions of order à + iδ asso-
ciated with (p, q) Lucas polynomials, AIMS Mathematics, 6(5), (2021), 4296–4305.
A. Amourah, T. Al-Hawary and B. A. Frasin, Application of Chebyshev polynomials to certain class of bi-Bazilevič
functions of order a + ib, Afr. Mat., 32(1), (2021), 1–8.
A. Amourah, B. A. Frasin and T. Abdeljawad, Fekete−Szegö inequality for analytic and bi-univalent functions subor-
dinate to Gegenbauer polynomials, J. Funct. Spaces, 2021, (2021), Article ID 5574673, 7 pages.
A. Amourah, A. Alsoboh, O. Ogilat, G. M. Gharib, R. Saadeh and M. Al Soudi, A Generalization of Gegenbauer
Polynomials and Bi-Univalent Functions, Axioms, 12, (2023), 128.
A. Aral and V. Gupta, On the Durrmeyer type modification of the q-baskakov type operators, Non-linear Anal. Theory,
Methods Appl., 72, (2010), 1171–1180.
A. Aral and V. Gupta, Generalized q-Baskakov operators, Math. Slovaca., 61, (2011), 619–634.
R. Askey and M.E.H. Ismail, A generalization of ultraspherical polynomials, Studies of Pure Mathematics, Birkhauser,
Boston, 1983.
H. Bateman, Higher Transcendental Functions, McGRAW-HILL book company, 1, (1953).
M. Çağlar, L.-I. Cotirlă and M. Buyankara, Fekete−Szego Inequalities for a New Subclass of Bi-Univalent Functions
Associated mith Gegenbauer Polynomials, SYMMETRY-BASEL, 14(8), (2022), 1–8.
R. Chakrabarti, R. Jagannathan and S. S. Naina Mohammed, Nem connection formulae for the q–orthogonal polyno-
mials via a series expansion of the q–exponential, Journal of Physics A: Mathematical and General, 39(40), (2006),12371.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag,
New York, Berlin, Heidelberg and Tokyo, 1983.
B. A. Frasin, T. Al-Hawary, F. Yousef and I. Aldawish, On subclasses of analytic functions associated with Struve
functions, Nonlinear Functional Analysis and Applications, 27 (1), (2022), 99–110.
Q. Hua, T. G. Shaba, J. Younis, B. Khan, W. K. Mashwani and M. Çağlar, Applications of q-derivative operator to sub-
classes of bi−univalent functions involving Gegenbauer polynomials, Applied Mathematics in Science and Engineering, 30(1), (2022), 501–520.
T. Al-Hawary, A. Amourah, J. Salah and F. Yousef, Two Inclusive Subfamilies of bi-univalent Functions, International
Journal of Neutrosophic Science, 24(4), (2024), 315–323.
F. H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edinb., 46, (1909), 253–281.
F. H. Jackson, On q-definite integrals, Q. J. Pure Appl. Math., 41, (1910), 193–203.
K. Kiepiela, I. Naraniecka and J. Szynal, The Gegenbauer polynomials and typically real functions, J. Comput. Appl.
Math., 153, (2003), 273–282.
A. Legendre, Recherches sur laattraction des sphéroides homogénes, MÉMoires PrÉSentes Par Divers. Savants
LaacadÉMie Des Sci. Lainstitut Fr. Paris. 10 (1785), 411–434.
S. S. Miller and P. T. Mocanu, Second Order Differential Inequalities in the Complex Plane. J. Math. Anal. Appl., 65,
(1978), 289–305.
S. S. Miller and P. T. Mocanu, Differential Subordinations and Univalent Functions, Mich. Math. J., 28, (1981),
–172.
S. S. Miller and P. T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker, Inc.: New York,
NY, USA, 2000.
G. Murugusundaramoorthy and T. Bulboacă, Subclasses of yamakawa−type Bi-starlike functions associated with
gegenbauer polynomials, Axioms, 11(3), (2022), 13 pages.
G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent
function, Abstr. Appl. Anal., 2013, (2013), Article ID 573017, 3 pages.
Z. Peng, G. Murugusundaramoorthy and T. Janani, Coefficient estimate of bi-univalent functions of complex order
associated with the Hohlov operator, J. Complex Analysis, 2014, (2014), Article ID 693908, 6 pages.
H. Orhan, İ. Aktaş and H. Arikan, On a new subclass oƒ bi-univalent functions associated with the (p, q)-Lucas
polynomials and bi-Bazilevic type functions of order r + ix, Turkish Journal of Mathematics, 47(1), (2023), 98–109.
R. Öztür and İ. Aktaş, Coefficient Estimates for Two New Subclasses of Bi-Univalent Functions Defined by Lucas−
Balancing Polynomials, Turkish J. Ineq., 7(1), (2023), 55–64.
H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl.
Math. Lett., 23(10), (2010), 1188–1192.
N. Yilmaz and İ. Aktaş, On some new subclasses of bi−univalent functions defined by generalized Bivariate Fibonacci
polynomial, Afrika Matematika, 33(2), (2022), 59.
F. Yousef, B. A. Frasin and T. Al-Hawary, Fekete−Szegö inequality for analytic and bi-univalent functions subordinate
to Chebyshev polynomials, Filomat, 32(9), (2018), 3229–3236.
F. Yousef, T. Al-Hawary and G. Murugusundaramoorthy, Fekete−Szegö functional problems for some subclasses of
bi-univalent functions defined by Frasin differential operator, Afr. Mat., 30, (2019), 495–503.
P. Zaprawa, On the Fekete−Szegö problem for classes of bi-univalent functions, Bulletin of the Belgian Mathematical
Society-Simon Stevin, 21(1), (2014), 169–178.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Results in Nonlinear Analysis
This work is licensed under a Creative Commons Attribution 4.0 International License.