ON RECURRENCE IN DENDRITE FLOWS
Abstract views: 6 / PDF downloads: 3
Keywords:
Group action, dendrite, recurrentAbstract
Consider a subgroup generated by a finite subset G that acts on
a dendrite X by transformations. (G, X) is called a flow. In this note, it was
proven that the flowing properties are equivalent:
(1) the flow (G, X) is pointwise recurrent;
(2) the flow (G, X) is almost periodic;
(3) the orbit closure relation of the flow (G, X) is closed;
(4) the flow (G, X) is equicontinuous.
Furthermore, we give a transitive flow having only two recurrent points
References
E.H.E. Abdalaoui and I. Naghmouchi, Group action with finite orbits on local dendrites, Dynamical Systems, 36(4):
–730 (2021).
J. Auslander, Minimal Flows and Their Extensions. North Holland, Amsterdam (1988)
J. Auslander, E. Glasner B. Weiss, On recurrence in zero dimensional flows, Forum Mathematicum. 19(1): 107–114
(2007).
A. F. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991.
J.J. Charatonik and W.J. Charatonik, Dendrites. Aprotactions Math. 22, (1998), 227–253.
B. Duchesne and N. Monod, Group actions on dendrites and curves. Annales de l’Institut Fourier, Tome 68, no 5 (2018),
p. 2277–2309
Enhui Shi and Hui Xu, Rigidity for higher rank lattice actions on dendrites, arXiv:2206.04022 [math.DS]
H. Hattab, Pointwise recurrent one-dimensional flows, Dynamical Systems: an international journal, 26(1): 77–83
(2011).
A. Haj Salem and H. Hattab, Dendrite Flows, Qual. Theory Dyn. Syst. (2017). 1–12; doi:10.1007/s12346-017-0237-0.
J. H. Mai, E. H. Shi, The nonexistence of expansive commutative group actions on Peano continua having free dendrites, Topology Appl. 155 (2007), 33–38.
Marzougui, H., Naghmouchi, I. Minimal sets and orbit spaces for group actions on local dendrites. Math. Z. 293,
–1070 (2019). https://doi.org/10.1007/s00209-018-2226-7.
H. Marzougui and I. Naghmouchi, Minimal sets for group actions on dendrites, Proc. Amer. Math. Soc., Volume 144,
Number 10, October 2016, Pages 4413–4425 http://dx.doi.org/10.1090/proc/13103.
S.B. Nadler, Continuum theory. New York, NY: Marcel Dekker, Inc; 1992.
E.H. Shi, Free groups of dendrite homeomorphism group, Topology and its Applications 159 (2012) 2662–2668.
E.H. Shi, S. Wang, and L. Zhou, Minimal group actions on dendrites, Proc. Amer. Math. Soc. 138 (2010), 217–223.
E.H. Shi and B.Y. Sun, Fixed point properties of nilpotent group actions on 1-arcwise connected continua, Proc. Amer.
Math. Soc. 137 (2009), 771–775.
G. Su, B. Qin, Equicontinuous dendrite flows, Journal of difference equations and applicatios (2019).
S. Wang, E.H. Shi, and L. Zhou, Topological transitivity and chaos of group action on dendrites, Int. J. Bifurcation and
Chaos, Vol. 19 No. 12 (2009), 4165–4174.
Whyburn GT. Analytic topology. Vol. 28, Providence, RI: American Mathematical Society; 1942; reprinted with
corrections 1971.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Results in Nonlinear Analysis
This work is licensed under a Creative Commons Attribution 4.0 International License.