ON RECURRENCE IN DENDRITE FLOWS


Abstract views: 6 / PDF downloads: 3

Authors

  • Hawete Hattab Umm Al-Qura University

Keywords:

Group action, dendrite, recurrent

Abstract

Consider a subgroup generated by a finite subset G that acts on
a dendrite X by transformations. (G, X) is called a flow. In this note, it was
proven that the flowing properties are equivalent:
(1) the flow (G, X) is pointwise recurrent;
(2) the flow (G, X) is almost periodic;
(3) the orbit closure relation of the flow (G, X) is closed;
(4) the flow (G, X) is equicontinuous.
Furthermore, we give a transitive flow having only two recurrent points

References

E.H.E. Abdalaoui and I. Naghmouchi, Group action with finite orbits on local dendrites, Dynamical Systems, 36(4):

–730 (2021).

J. Auslander, Minimal Flows and Their Extensions. North Holland, Amsterdam (1988)

J. Auslander, E. Glasner B. Weiss, On recurrence in zero dimensional flows, Forum Mathematicum. 19(1): 107–114

(2007).

A. F. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991.

J.J. Charatonik and W.J. Charatonik, Dendrites. Aprotactions Math. 22, (1998), 227–253.

B. Duchesne and N. Monod, Group actions on dendrites and curves. Annales de l’Institut Fourier, Tome 68, no 5 (2018),

p. 2277–2309

Enhui Shi and Hui Xu, Rigidity for higher rank lattice actions on dendrites, arXiv:2206.04022 [math.DS]

H. Hattab, Pointwise recurrent one-dimensional flows, Dynamical Systems: an international journal, 26(1): 77–83

(2011).

A. Haj Salem and H. Hattab, Dendrite Flows, Qual. Theory Dyn. Syst. (2017). 1–12; doi:10.1007/s12346-017-0237-0.

J. H. Mai, E. H. Shi, The nonexistence of expansive commutative group actions on Peano continua having free dendrites, Topology Appl. 155 (2007), 33–38.

Marzougui, H., Naghmouchi, I. Minimal sets and orbit spaces for group actions on local dendrites. Math. Z. 293,

–1070 (2019). https://doi.org/10.1007/s00209-018-2226-7.

H. Marzougui and I. Naghmouchi, Minimal sets for group actions on dendrites, Proc. Amer. Math. Soc., Volume 144,

Number 10, October 2016, Pages 4413–4425 http://dx.doi.org/10.1090/proc/13103.

S.B. Nadler, Continuum theory. New York, NY: Marcel Dekker, Inc; 1992.

E.H. Shi, Free groups of dendrite homeomorphism group, Topology and its Applications 159 (2012) 2662–2668.

E.H. Shi, S. Wang, and L. Zhou, Minimal group actions on dendrites, Proc. Amer. Math. Soc. 138 (2010), 217–223.

E.H. Shi and B.Y. Sun, Fixed point properties of nilpotent group actions on 1-arcwise connected continua, Proc. Amer.

Math. Soc. 137 (2009), 771–775.

G. Su, B. Qin, Equicontinuous dendrite flows, Journal of difference equations and applicatios (2019).

S. Wang, E.H. Shi, and L. Zhou, Topological transitivity and chaos of group action on dendrites, Int. J. Bifurcation and

Chaos, Vol. 19 No. 12 (2009), 4165–4174.

Whyburn GT. Analytic topology. Vol. 28, Providence, RI: American Mathematical Society; 1942; reprinted with

corrections 1971.

Downloads

Published

2024-11-18

How to Cite

Hattab, H. (2024). ON RECURRENCE IN DENDRITE FLOWS. Results in Nonlinear Analysis, 7(4), 21–25. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/353