On Graded W-2-Absorbing Second Submodules

On Graded W-2-Absorbing Second Submodules

Abstract views: 68 / PDF downloads: 52


  • Thikrayat Alwardat Jordan University of Science and Technology
  • khaldoun Al-Zoubi Jordan University of Science and Technology


Graded W-2-Absorbing Second Submodules, Graded 2-Absorbing Second Submodules, Graded W-2-Absorbing Submodules


Let $\Re$ be a commutative graded ring with unity, $\Im$ be a graded $\Re$-module,
$W$ be a multiplicatively closed subset of homogeneous elements of $\Re$ and $ 
K $ be a graded submodule of $\Im$ such that $Ann_\Re(K) \cap W = \emptyset $.
In this paper, we introduce the concept of graded $W$-2-absorbing second
submodules of $\Im$ as a generalization of graded 2-absorbing second
submodules. We say $K$ is a graded $W$-2-absorbing second submodule of $\Im$,
if there exists a fixed $s_\alpha \in W$ and whenever $r_g t_h K \subseteq H$%
, where $r_g, t_h \in h(\Re)$ and $H$ is graded submodule of $\Im$, then either $ 
s_\alpha r_g K \subseteq H$ or $s_\alpha t_h K \subseteq H$ or $s_\alpha r_g
t_h \in Ann_\Re(K) $. Several results concerning these classes of graded
submodules are given.


K. Al-Zoubi and R. Abu-Dawwas,emph{ On graded 2-absorbing and

weakly graded 2-absorbing submodules}, J. Math. Sci. Adv. Appl. textbf{28}

(2014), 45-60.

K. Al-Zoubi, R. Abu-Dawwas and W. c{C}eken, emph{On graded

-absorbing and graded weakly 2-absorbing ideals}, Hacet. J. Math. Stat.,

textbf{48} (3) (2019), 724--731.

K. AL-Zoubi and and M. AL-Azaizeh, On graded 2-absorbing second submodules of graded modules over graded commutative rings, Kragujevac J. Math. textbf{48} (1) (2024), 55-66.

K. Al-Zoubi and A. Al-Qderat, Some properties of graded comultiplication modules, Open Math., textbf{15} (1) (2017), 187-192.

H. Ansari-Toroghy and F. Farshadifar, emph{Graded

comultiplication modules}, Chiang Mai J. Sci., textbf{38} (3) (2011),


H. Ansari-Toroghy, F. Farshadifar, On graded second modules, Tamkang J. Math. textbf{43} (4) (2012), 499-505.

S. E. Atani, On graded prime submodules, Chiang Mai J. Sci., textbf{33} (2006), 3--7.

S. c{C}eken and M. Alkan, emph{On graded second and coprimary

modules and graded secondary representations}, Bull. Malays. Math. Sci.

Soc., textbf{38} (4) (2015), 1317--1330.

C. Nastasescu and F. Van Oystaeyen, emph{Graded and filtered

rings and modules} , Lecture notes in mathematics 758, Berlin-New York:

Springer-Verlag, 1982.

C. Nastasescu, F. Van Oystaeyen, emph{Graded Ring Theory},

Mathematical Library 28, North Holand, Amsterdam, 1982.

C. Nastasescu and F. Van Oystaeyen, emph{Methods of Graded

Rings}, LNM 1836. Berlin-Heidelberg: Springer-Verlag, 2004.

M. Refai, R.Abu-Dawwas, On generalizations of graded second submodules. Proyecciones (Antofagasta) textbf{39} (6) (2020), 1537-1554.

M. Refai and K. Al-Zoubi, emph{On graded primary ideals}, Turk. J. Math. textbf{28} (2004), 217--229.

S. Al-Kaseasbeh, K. Al-Zoubi, On graded $A$-2-absorbing submodules of graded modules over graded commutative rings, Novi Sad J. Math. (2022), https://doi.org/10.30755/NSJOM.12403

M. Hamoda and K. Al-Zoubi, On graded $W$-comultiplication modules, arXiv preprint arXiv:2205.00882.




How to Cite

Alwardat, T., & Al-Zoubi, khaldoun. (2024). On Graded W-2-Absorbing Second Submodules: On Graded W-2-Absorbing Second Submodules. Results in Nonlinear Analysis, 7(2), 16–26. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/326