On Graded W-2-Absorbing Second Submodules
On Graded W-2-Absorbing Second Submodules
Abstract views: 165 / PDF downloads: 96
Keywords:
Graded W-2-Absorbing Second Submodules, Graded 2-Absorbing Second Submodules, Graded W-2-Absorbing SubmodulesAbstract
Let $\Re$ be a commutative graded ring with unity, $\Im$ be a graded $\Re$-module,
$W$ be a multiplicatively closed subset of homogeneous elements of $\Re$ and $
K $ be a graded submodule of $\Im$ such that $Ann_\Re(K) \cap W = \emptyset $.
In this paper, we introduce the concept of graded $W$-2-absorbing second
submodules of $\Im$ as a generalization of graded 2-absorbing second
submodules. We say $K$ is a graded $W$-2-absorbing second submodule of $\Im$,
if there exists a fixed $s_\alpha \in W$ and whenever $r_g t_h K \subseteq H$%
, where $r_g, t_h \in h(\Re)$ and $H$ is graded submodule of $\Im$, then either $
s_\alpha r_g K \subseteq H$ or $s_\alpha t_h K \subseteq H$ or $s_\alpha r_g
t_h \in Ann_\Re(K) $. Several results concerning these classes of graded
submodules are given.
References
K. Al-Zoubi and R. Abu-Dawwas,emph{ On graded 2-absorbing and
weakly graded 2-absorbing submodules}, J. Math. Sci. Adv. Appl. textbf{28}
(2014), 45-60.
K. Al-Zoubi, R. Abu-Dawwas and W. c{C}eken, emph{On graded
-absorbing and graded weakly 2-absorbing ideals}, Hacet. J. Math. Stat.,
textbf{48} (3) (2019), 724--731.
K. AL-Zoubi and and M. AL-Azaizeh, On graded 2-absorbing second submodules of graded modules over graded commutative rings, Kragujevac J. Math. textbf{48} (1) (2024), 55-66.
K. Al-Zoubi and A. Al-Qderat, Some properties of graded comultiplication modules, Open Math., textbf{15} (1) (2017), 187-192.
H. Ansari-Toroghy and F. Farshadifar, emph{Graded
comultiplication modules}, Chiang Mai J. Sci., textbf{38} (3) (2011),
--320.
H. Ansari-Toroghy, F. Farshadifar, On graded second modules, Tamkang J. Math. textbf{43} (4) (2012), 499-505.
S. E. Atani, On graded prime submodules, Chiang Mai J. Sci., textbf{33} (2006), 3--7.
S. c{C}eken and M. Alkan, emph{On graded second and coprimary
modules and graded secondary representations}, Bull. Malays. Math. Sci.
Soc., textbf{38} (4) (2015), 1317--1330.
C. Nastasescu and F. Van Oystaeyen, emph{Graded and filtered
rings and modules} , Lecture notes in mathematics 758, Berlin-New York:
Springer-Verlag, 1982.
C. Nastasescu, F. Van Oystaeyen, emph{Graded Ring Theory},
Mathematical Library 28, North Holand, Amsterdam, 1982.
C. Nastasescu and F. Van Oystaeyen, emph{Methods of Graded
Rings}, LNM 1836. Berlin-Heidelberg: Springer-Verlag, 2004.
M. Refai, R.Abu-Dawwas, On generalizations of graded second submodules. Proyecciones (Antofagasta) textbf{39} (6) (2020), 1537-1554.
M. Refai and K. Al-Zoubi, emph{On graded primary ideals}, Turk. J. Math. textbf{28} (2004), 217--229.
S. Al-Kaseasbeh, K. Al-Zoubi, On graded $A$-2-absorbing submodules of graded modules over graded commutative rings, Novi Sad J. Math. (2022), https://doi.org/10.30755/NSJOM.12403
M. Hamoda and K. Al-Zoubi, On graded $W$-comultiplication modules, arXiv preprint arXiv:2205.00882.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Results in Nonlinear Analysis
This work is licensed under a Creative Commons Attribution 4.0 International License.