(f, g)-φ-Contraction Mappings in Menger


Abstract views: 186 / PDF downloads: 112

Authors

  • Youssef ACHTOUN Normal Higher School, Abdelmalek Essaadi University, Morocco.
  • Mohammed LAMARTI SEFIAN Normal Higher School, Abdelmalek Essaadi University, Morocco.
  • Ismail TAHIRI Normal Higher School, Abdelmalek Essaadi University, Morocco.

Keywords:

Common fixed point theorem. (A,B)-ω-probabilistic contraction. Menger spaces. Fuzzy metric spaces.

Abstract

In the current work, we will focus on coincidence point and common fixed point property for a family of single mappings in Menger spaces. In order to realize our objective, we present the concept of (A, B)-ω-probabilistic contraction, and by utilizing these one, we will examine the common fixed point property for a family of mappings in Menger spaces. The related common fixed point property in fuzzy metric spaces is achieved as a result of our main finding. Finally, we will give some relatives results in ordinary metric spaces to illustrate the main theorem.

References

A. George and P. Veeramani, On some results in fuzzy metric spaces, FuzzySe ts and Systems, 64 (1994), 395-399.

B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl., 301 (2005), 439-448.

G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771-779.

H. Sherwood, Complete probabilistic metric spaces, Z. Wahrscheinlichkeits theorie und Verw. Gebiete 20 (1971/72), 117-128.

O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht, 2001.

J. Jachymski, On probabilistic ϕ-contractions on Menger spaces, Nonlinear Analysis, 73 (2010) 2199-2203.

J. Z. Fang, On φ-contractions in probabilistic and fuzzy metric spaces, Fuzzy Sets and Systems, 267 (2015), 86-99.

J. Z. Fang, Common fixed point theorems of compatible and weakly compatible maps in Menger spaces, Nonlinear Analysis 71 (2009), 1833-1843.

J. Z. Xiao, Z. H. Zhu and Y. digamma. Cao, Common coupled fixed point results for probabilistic φ-contractions in Menger spaces, Nonlinear Anal. 74 (2011), 4589-4600.

S. Banach, Sur les operations dans les ensembles abstraites et leurs applications, Fund. Math. 3(1922), 133-181.

S. Kumar and B.D. Pant, Some common fixed point theorems for mappings satisfying a new contraction condition in Menger spaces, Varahmihir J. Math. Sci. 5 (2005), 227-234.

S. L. Singh, S. N. Mishra and B. D. Pant, General fixed point theorems in probabilistic metric and uniform space, Indian J. Math. 29 (1987), 9-21.

S. L. Singh and B. D. Pant, Common fixed point theorems for commuting mappings in probabilistic metric spaces, Honam Math. J. 5 (1983), 139-150.

S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japonica 36 (1991), 283-289.

S. Zhang, Q. Zhu and Y. Song, Alternating picard itearates for hybird Boyd-Wong contractions, Int. Journal of math. Analysis, Vol. 2, (2008), no. 12, 563-568.

V. M. Sehgal and A. h. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric space, Math. Systems Theory 6 (1972), 97-102.

V. Radu, Some fixed point theorems in probabilistic metric spaces, Stability Problems for Stochastic Models (Verna, 1985), Lecture Notes in Math., vol. 1233 (1987), 125-133.

Downloads

Published

2023-09-17

How to Cite

ACHTOUN, Y., LAMARTI SEFIAN, M., & TAHIRI, I. (2023). (f, g)-φ-Contraction Mappings in Menger. Results in Nonlinear Analysis, 6(3), 97–. Retrieved from https://nonlinear-analysis.com/index.php/pub/article/view/201