Structural approach of infinite matrix using difference operator
Abstract views: 106 / PDF downloads: 63
Abstract
The major structure of this present article is to establish and analyze the spaces involving the infinite matrices with the operator introduced by Kizmaz. -duals will be constructed. BK spaces will be given its place for synthesis.
References
G. Kothe, Topological Vector Spaces (Springer-Verlag, New York),1969.
M. Mursaleen, Applied Summability Methods, Springer Cham, Heidelberg, 2014.
R. Colac and M. Et, On Koothe duals of generalized difference sequence spaces, Soochow J. Math, 21(4)(1995), 377-386.
H. Kizmaz, On certain sequence spaces, Canad. Math. Bull 24(2)( 1981), 169-176.
A. Robinson, On Functional Transformation and Summability (Proc. Springer Cham
Heidelberg).
A. H. Ganie and N. A. Sheikh, On the sequence space l(p,s) and some matrix transfor-
mations, Nonlinear Functional Analysis and Applications,18(2) (2013), 253-258.
A. H. Ganie, S. A. Lone and A. Akhter, Generalised Cesaro difference sequence space
of non- absolute type, EKSAKTA, 1(2)(2020), 147-153.
A. H. Ganie, Generalized difference sequence spaces, Adv. Stud. Contemp. Math.
(Kyungshang), 30 (2) (2020), 197 – 206.
S. Ray S, Difference sequence spaces and matrix methods, J. Science Engg. & Tech. 10(1) (2014),73-78.
I J Maddox, Infinite matrices of operators, Lecture Notes in Math., Infinite matrices of
operators, Berlin-Heidelberg-New York: Springer-Verlag, 1980.
B C Tripathy, A New type of difference sequence spaces, International Journal of
Science & Technology, 1(1) (2006), 11-14.
T. Šalát, B. C. Tripathy, and M. Ziman, On some properties of I-convergence. Tatra Mt.
Math. Publ., 28(2)(2004), 279-286.
A H Ganie and D Fathima, On some new scenario of Δ-spaces, J. Nonlinear Sci. Appl.,
(2021), 163-167.
D. Fathima, M. m Albaidani, A. H. Ganie and A. Akhter, New structure of Fibonacci
numbers using concept of ∆-operator, Journal of Mathematics and Computer Science,
(2)(2022), 101-112.
A. H. Ganie, A. Mobin N. A. Sheikh and T. Jalal, New type of Riesz sequence space
of non-absolute type, J. Appl. Comput. Math., 5(1)(2016), 1-4.
N. A. Sheikh and A. H. Ganie, A new type of sequence space of non-absolute type and matrix transformation, WSEAS Transaction of Math., 8(12) (2013), 852-859.
N. A. Sheikh, T. Jalal and A. H. Ganie, New type of sequence spaces of non-absolute type and some matrix transformations, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 29(2013), 51-66.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Results in Nonlinear Analysis
This work is licensed under a Creative Commons Attribution 4.0 International License.