Some new existence results on the hybrid fractional differential equation with variable order derivative
Abstract views: 310 / PDF downloads: 240
Keywords:
ψ-Hilfer derivative, variable order fractional derivative, Krasnoselskii fixed point theoremAbstract
Fractional order systems play a vital role in the study of the abnormal behavior of dynamic systems in physics, biology, viscoelasticity, and in the study of population dynamics. The thing that caught our attention thinking about using the order of the fractional derivatives as a function, where we find some works (mentioned in the introduction), in which the order of the fractional derivative has been used as a function that changes with concentration, time, space, or other independent quantities.
References
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, NorthHolland Math. Stud., 2006, pp. 204. Elsevier, Amsterdam.
A. J. Turski, B. Atamaniuk, E. Turska. Application of fractional derivative operators to anomalous diffusion and propagation problems., 2007. arXiv preprint math-ph/0701068.
T. A. Burton, A fixed-point theorem of Krasnoselskii, Applied Mathematics Letters., 1998, 11(1): 85–88.
S. G, Samko, B. Ross, Integration and differentiation to a variable fractional order. Integral transforms and special functions, 1993, 1(4): 277–300.
C. F. Lorenzo, T. T Hartley, Variable order and distributed order fractional operators, Nonlinear dynamics, 2002, 29(1): 57–98.
I. M. Sokolov, A. V. Chechkin, J. Klafter, Distributed-order fractional kinetics, 2004. arXiv preprint cond-mat/0401146 (2004)
I. Podlubny, et al., Matrix approach to discrete fractional calculus II: partial fractional differential equations. Journal of Computational Physics, 2009, 228(8): 3137–3153.
J. V. C. Sousa, E. C. Oliveira, On the ψ-Hilfer fractional derivative”, Commun. Nonlinear Sci. Numer. Simulat., 2018,60: 72–91.
K. D. Kucche, D. M. Ashwini, On the nonlinear ψ-Hilfer hybrid fractional differential equations, Computational and Applied Mathematics., 2022 41(3): 1–23.
L. E. S Ramirez, C. F. M. Coimbra. A variable order constitutive relation for viscoelasticity. Annalen der Physik, 2007, 519(7–8): 543–552.
N. Limpanukorn, S. N. Parinya, Existence and Ulam stability of solution to fractional order hybrid differential equations of variable order, Thai Journal of Mathematics, 2020, 18(1): 453–463.
M. S. Abdo, A. G. Ibrahim, S. K. Panchal, Nonlinear implicit fractional differential equation involving ψ-Caputo fractional derivative, Proc. Jangjeon Math. Soc. (PJMS), 2019, 22(3): 387–400.
R. Almeida, A Caputo, fractional derivative of a function with respect to another function, Comm. Nonlinear Sci. Numer. Simulat., 2017, 44: 460–481.
H. G. Sun, et al., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, The european physical journal special topics., 2011, 193(1): 185–192.
S. Zhang, The uniqueness result of solutions to initial value problems of differential equations of variable-order. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas., 2018, 112(2): 407–423.
S. Z. Rida, A. M. A. El-Sayed, A. A. M. Arafa, Effect of bacterial memory dependent growth by using fractional derivatives reaction-diffusion chemotactic model. Journal of Statistical Physics, 2010, 140(4): 797–811.
B. C. Dhage, V. Lakshmikantham, Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations. Differ. Equ. Appl., 2010, 2(4): 465–486.
B. C. Dhage, On a fixed point theorem in Banach algebras with applications. Applied Mathematics Letters, 2005, 18(3): 273–280.
K. Hilal, K. Ahmed, Boundary value problems for hybrid differential equations with fractional order, Advances in Difference Equations, 2015, 1: 1–19