Interpolation by Lupaş q-type operators on Tetrahedrons
Interpolation by Lupaş q-type operators on Tetrahedrons
Abstract views: 164 / PDF downloads: 180
Keywords:
Lupaş type q-Bernstein operators, Boolean sum operators, tetrahedron, modulus of continuity, error estimationAbstract
The goal of this study is to build Lupaş type Bernstein operators (rational) on tetrahedrons with all straight edges and three curved edges determined by specific functions. Interpolation attributes, approximation accuracy (degree of exactness, precision set), and the remainders of the approximation formula of Lupaş type Bernstein operators are assessed using Peano’s theorem and modulus of continuity.
References
F.A.M. Ali, S.A.A. Karim, A. Saaban, M.K. Hasan, A. Ghaffar, K.S. Nisar, and D. Baleanu, Construction of Cubic Timmer Triangular Patches and its Application in Scattered Data Interpolation, Mathematics, 8 (2), 159.
R. E. Barnhill and L. Mansfield, Error bounds for smooth interpolation in trian- gles, J. Approx. Theory, 11(1974), 306-318.
S. N. Bernstein, constructive proof of Weierstrass approximation theorem, Comm. Kharkov Math. Soc. (1912).
P. Blaga, T. Catinas and G. Coman, Bernstein-type operators on tetrahe- drons, Studia Univ. “Babes ̧–Bolyai”, Mathematica, Volume LIV, Number 4, December 2009.
Q. B. Cai, W. T. Cheng, Convergence of λ-Bernstein operators based on (p, q)-integers, J. Ineq. App.(2020) 2020:35.
Q. B. Cai, B. Y. Lian and G. Zhou, Approximation properties of λ- Bernstein operators, J. Ineq. App.(2018) 2018:61.
P. Blaga, T. Cătinaş and G. Coman, Bernstein-type Operators on a Tri- angle with One Curved Side, Mediterranean Journal of Mathematics, 9(4)(2011), 1-13.
M. Mursaleen, K. J. Ansari and A. Khan, Approximation properties and error estimation of q-Bernstein shifted operators, Numer. Algor. 84(2020), 207-227.
M. Mursaleen and A. Khan, Generalized q-Bernstein-Schurer Op- erators and Some Approximation Theorems, Journal of Function Spaces and Applications Volume 2013, Article ID 719834, 7 pages http://dx.doi.org/10.1155/2013/719834.
Asif Khan, M.S. Mansoori, Khalid Khan and M. Mursaleen, Phillips-type q-Bernstein on Triangles, Journal of Function Spaces, vol. 2021, Article ID 6637893, 13 pages, 2021. https://doi.org/10.1155/2021/6637893
Asif Khan and M.S. Mansoori and Khalid Khan and M. Mur- saleen, Lupaş type Bernstein operators on triangles based on quan- tum analogue, Alexandria Engineering Journal, 60 (6), 5909-5919, 2021, doi.org/10.1016/j.aej.2021.04.038.
T. Acar, A. Aral, Approximation properties of two dimensional Bernstein- Stancu-Chlodowsky operators, Matematiche (Catania), 68(2), 2013, 15-31.
T. Acar, A. Aral and S. A. Mohiuddine, Approximation by Bivariate (p, q)- Bernstein-Kantorovich Operators, Iranian Journal of Science and Technol- ogy, Transactions A: Science 42, 655-662(2018).
N. Braha, T. Mansour, M. Mursaleen, T. Acar, Convergence of Lambda- Bernstein operators via power series summability method, Journal of Ap- plied Mathematics and Computing, 65, 125-146 (2021).
A. Lupaş, A q-analogue of the Bernstein operator, Seminar on Numeri- cal and Statistical Calculus, University of Cluj-Napoca, vol. 9, pp. 85-92, (1987).
R. Paltanea, Durrmeyer type operators on a simplex, Constr. Math. Anal, 4 (2) (2021), 215-228.
M J D Powell, Approximation theory and methods, 1981 (CUP, reprinted 1988).
A. Kajla, T. Acar, Blending type approximation by generalized Bernstein- Durrrmeyer type operators, Miskolc Mathematical Notes, 19 (1), 2018, 319- 326.
A. Kajla, T. Acar, Modified alpha-Bernstein operators with better approx- imation properties, Annals of Functional Analysis, 10 (4), 2019, 570 — 582.
Khalid Khan, D. K. Lobiyal, Be ́zier curves based on Lupas (p, q)-analogue of Bernstein functions in CAGD, Journal of Computational and Applied Mathematics, 317, 2017, 458-477.
G. E. Andrews, R. Askey and R. Roy, Special functions, Encyclopedia Math. Appl., vol. 71, Cambridge Univ. Press, Cambridge, 1999.
R. E. Barnhill, G. Birkhoff and W. J. Gordon, Smooth interpolation in triangle, J. Approx. Theory, 8(1973), 114-128.
R. E. Barnhill and J. A. Gregory, Polynomial interpolation to boundary data on triangles, Math. Comp., 29(131)(1975), 726-735.
R. E. Barnhill and L. Mansfield, Error bounds for smooth interpolation in trian- gles, J. Approx. Theory, 11(1974), 306-318.
A. Lupaş, A q-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, 9 (1987), 85-92.
M. Mursaleen, K. J. Ansari, A. Khan, Approximation properties and error estimation of q-Bernstein shifted operators, Numer. Algor. 84(2020), 207- 227.
M. Mursaleen, A. Khan, Generalized q-Bernstein-Schurer Operators and Some Approximation Theorems, Journal of Function Spaces and Applica- tions Volume 2013, Article ID 719834, 7 pages.
G. M. Nielson, D. H. Thomas and J. A. Wixom, Interpolation in triangles, Bull.Austral. Math. Soc., 20(1)(1979), 115-130.
G.M. Phillips, A generalization of the Bernstein polynomialsbased on the q-integers, The ANZIAM Journal, 42 (2000), 79-86.
G. M. Phillips, Bernstein polynomialsbased on the q-integers, Annals Nu- mer. Math. 4 (1997), 511-518.
L. L. Schumaker, Fitting surfaces to scattered data, Approximation Theory II (G. G. Lorentz, C. K. Chui, L. L. Schumaker, eds.), Academic Press, (1976), 203-268.
D. D. Stancu, Evaluation of the remainder term in approximation formulas by Bernstein polynomials, Math. Comp., 17(1963), 270-278.
D. D. Stancu, The remainder of certain linear approximation formulas in two vari-ables, SIAM Numer. Anal. Ser. B, 1(1964), 137-163.
Downloads
Published
Versions
- 2023-05-05 (2)
- 2023-05-05 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Results in Nonlinear Analysis
This work is licensed under a Creative Commons Attribution 4.0 International License.