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Abstract

In this paper, we study the Robin-Dirichlet problem (P,) for a strongly damped wave equation with
arithmetic-mean terms S,u and Snu, where u is the unknown function, S,u = %2?21 u(%, t) and S’nu =
%2?21 u%(%,t) First, under suitable conditions, we prove that, for each n € N, (P,,) has a unique weak
solution u™. Next, we prove that the sequence of solutions u™ converge strongly in appropriate spaces to the

weak solution u of the problem (P), where (P) is defined by (F,) in which the arithmetic-mean terms S,u
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and S,u are replaced by fo (y,t)dy and fo y,t)dy, respectively. Finally, some remarks on a couple of
open problems are given.

Keywords: Robin-Dirichlet problem, Arithmetic-mean terms, Faedo-Galerkin method, Linear recurrent
sequence.
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1. Introduction

In this paper, we investigate the Robin-Dirichlet problem for a strongly damped wave equation as
follows
Ut — AMUgze — ( ( )( )) Ugy
(P,) = f(x,t,u, ug, ug, (Spu)(t)), 0<xz <1, 0<t<T, (1.1)
uz(0,t) — Cu(0,t) = u(1,t) =0,
u(x,0) = tg(z), u(x,0)=1u1(z),

where f, g, 41 are given functions, A > 0, { > 0, are given constants, and S,u, gnu are arithmetic-mean
terms defined by

_ 1 -1

- Zl 1 T’

($n)(£) = (Susd)(t) = %Ziﬂ u2(11).

The nonlinear wave equations with strong damping have been investigated by many authors for years.
These equations arise naturally in various sciences such as classical mechanics, fluid dynamics, quantum field
theory, see [I] - [14] and the references given therein.

In [I1], Pellicer and Morales considered a model for a damped spring-mass system, precisely a strongly
damped wave equation with dynamic boundary conditions as follows

(1.2)

utt—um—autm;:(),0<x<1,t>0,
u(0,t) =0, (1.3)
u(1,1) = —e Jug(1,t) + au (1,t) + ru(1, )] .

It is well known that the motion of a mass in a spring-mass-damper system is usually modelled by the
following second-order ordinary differential equation (ODE) of damped oscillations

mu (t) = —ku(t) — du'(t), (1.4)

where k > 0 is recovery constant of spring and d > 0 stands for dissipation coefficient. The authors showed
that, for some certain values of the parameters in , the large time behaviour of the solutions is the
same as for a classical spring-mass-damper ODE. For more details, they proved that for fixed constants «,
r > 0 and € small enough, the partial differential equation model admitted two dominant eigenvalues.
Therefore, this can be implied the existence of a second-order ODE of type which can be considered as
the limit of the model when t — oo and ¢ is sufficiently small.

In 5], O.M. Jokhadze studied the following Cauchy problem for a wave equation with a nonlinear damping
term

{ Ut — Uz + h(ug) = f(z,t), x €R, t >0, (1.5)

u(z,0) = p(x), ue(x,0) = (),
where h, f, ¢, and ¥ are given real functions. The existence, uniqueness, nonuniqueness, and nonexistence
of a global classical solution were established.
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In [9], Nhan et. al. considered the Robin problem for a nonlinear wave equation with source containing
multi-point nonlocal terms as follows

Uttt — Ugyx = f (xvt7u(:l:at)’ut(l‘at)’u(nlvt)v T ,u(nq,t)),
O<z<1,0<t<T,

(0, ) — hou(0, ) = 1y (1, ) + hyu(1,£) = 0, (1.6)
u(x70) = ﬁo(.’lf), ut(x70) = ﬂl(.’L’),
where f, g, @ are given functions and hg, h1 > 0, 11, 72, -+ , 14 are given constants with hg +h; >0, 0 <

m < 1Mz < --- <1y < 1. The unique existence and the high-order asymptotic expansion in a small parameter
of solutions for the problem |D were established. We note that the arithmetic-mean 1 Y% | u(%) in D
can be considered as a special linear combination of {u(ni)}1<l< o i (L.6).

We also note that, if the functions y — u(y, t) and y — u2(y, t) are continuous on [0, 1], with ¢ € [0, 7]

fixed, then we have
1
D DIRTC / u(y.t)dy,

1 n 2
- Z‘:1ugc( — —>/ “(y,t)dy, as n — oo,

hence Eq. (L.1)); may be related to the following equation

1
Ut — )\Utmz - <1 + / Ui(.% t)dy> Uga
0

1 (1.7)
=f <x,t,u,ux,ut,/ u(y,t)dy> ,0<z<l,0<t<T.
0

Therefore, it is possible that the existence of solution for the problem (P,) — leads to the existence
of solution for the problem (P) (L.1))2,3-(1.7).

Motivated by the mentioned works, especially according to the point of view above, we shall consider
the problem (P,) (1.1)-(1.2). Our paper consits of five sections. In Section 2, we present preliminaries and
technical lemmas (Lemma 2.1- Lemma 2.4). In Section 3, we prove that (P,) has a unique weak solution
u™. In Section 4, we show that the solution sequence u™ in appropriate spaces strongly converges to a weak
solution u of the problem (P) as n — oo. In the proofs of results obtained here, the main tools of functional
analysis such as the linear approximate method, the Galerkin method, the arguments of continuity with priori
estimates, the compact method, the regularized technique are employed. The engery method is also applied
to contructing a suitable engery lemma (Lemma 3.3), in which a piecewise linear function on [0,7] and a
regularized sequence in CS°(R) are used to get an engery inequality. Lemma 3.3 is a relative generalization of
the lemma given in Lions’s book [[7], Lemma 6.1, p. 224], that is the key lemma to establish the convergence
of linear approximate sequence associated with the problem (P, ). Finally, in Section 5, we give some remarks
on a couple of open problems.

2. Preliminaries

Put Q = (0,1). We denote L? = LP(Q), H™ = H™ (). Let (-,-) be either the scalar product in L?
or the dual pairing of a continuous linear functional and an element of a function space. The notation |||
stands for the norm in L? and ||-||yx for the norm in a Banach space X. We call X’ the dual space of X. We
consider LP(0,T; X), 1 < p < oo, that is a Banach space of real functions w : (0,7") — X measurable, such
that [lulp(o 1, x) < +00, with

1/
(5 el dr) ™", it 1<p <o,

u . =
[l Lo o7, esssup [lu(t)|| x , if p=o0.
0<t<T
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Let u(t), u/(t) = u(t) = a(t), v’ (t) = up(t) = i(t), ug(t) = vu(t), ug(t) = Au(t), denote u(x,t),
ou 0?u ou @

E(w,t), ﬁ(x,t), (‘Tx(m’t)’ 52 (x,t), respectively.

Let 7 > 0, with f € C¥(0,1] x [0,7°] x BY), f = f(a,t, 0, ), we put Dif = 24 Dy = 7

z’ ot’
Diiof = gf with i =1, ,4, and Df = D{ - D§S f, a = (ay,-++, ag) € ZS, |a| =1+ +ag = k,
DO0) f — 7,
On H', we shall use the following norm
1/2
ol s = (Wl + loal?) 2.1)
We put
V={ve HYQ) :v(1) =0}, (2.2)
1
a(u,v) = / Uy (z)vg (x)dx + Cu(0)v(0), u,v e V. (2.3)
0
V is a closed subspace of H! and three norms v — ||v|| g1, v — ||vz]| and v — [jv]|, = /a(v,v) on

V' are equivalent norms.

We have the following lemmas, the proofs of which are straightforward hence we omit the details.
Lemma 2.1. The imbedding H' — C°(Q) is compact and

[vllcogmy < V2ol for all v e H'. (2.4)
Lemma 2.2. Let ( > 0. Then the imbedding V < C°(Q) is compact and

Iolleoy < el < [l 05
L5 ol < el < ol < VIFC ol € VIFC ol |

forallveV.

Lemma 2.3. Let ¢ > 0. Then the symmetric bilinear form a(-,-) defined by (2.3) is continuous on V xV
and coercive on V.

Lemma 2.4. Let ¢ > 0. Then there exists a Hilbert orthonormal base {w;} of L? consisting of eigen-
Junctions w; corresponding to eigenvalues \j such that

0<A <A< <N <-o, lim A\ = +oo,
J—+o00 (2.6)
a(wj,v) = Xj(wj,v) forall veV,j=1,2,---.

Furthermore, the sequence {w;/+\/A;} is also a Hilbert orthonormal base of V with respect to the scalar
product a(-,-) defined by (2.3).

On the other hand, w; satisfies the following boundary value problem

{ —Aw; = A\jw;, in (0,1), _ (2.7)

wjz(0) — Cw;(0) = w;(1) = 0, w; € C=().

The proof of Lemma 2.4 can be found in ([13], p.87, Theorem 7.7), with H = L? and V, a(-, ) as defined
by @2), @3). )

Definition 2.5. A weak solution of the initial-boundary value problem is a function u € Vp =
{ve L>®0,T;H*NV) : v € L>®(0,T; H*NV), v" € L>(0,T; L*) N L?(0,T;V)}, such that u satisfies the

following variational equation

(W"(t), w) + Aa(u/(t), w) + plu](t)a(u(t), w) = (f[u](t),w), (2.8)
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for all w eV, a.e., t € (0,T), together with the initial conditions

u(0) = 1o, u'(0) = a1, (2.9)
where
flul(z,t) = f (2, t,u(z, t), ug(z, t), W (z,t), (Spu)(t)) ,
p(t) = plu)(t) = 1+ (Spu)(0),
(Swu)(t) =337 u(5he). (210
(Swu)(t) = (Snu2)(t) = 237" w2(5E 1)

3. Existence and uniqueness

In this section, we shall prove the existence and uniqueness of solutions of the problem (P,) (1.1)-
(L.2). Tt is necessary to make the following assumptions:
(Hi) o, @ € VN H?, p,(0) — Ctig(0) = 0;
(Hy) f e CY([0,1] x [0,T*] x R*) such that
f(1,£,0,y2,0,y4) = 0 for all ¢ € [0,T*], V (y2,54) € R?.
For each M > 0 given, we set the constant K/(f) as follows

Eum(f) = fller(ay) = Iflloo(a,) + Z; 1D fllco () -

where

HfHCO(AM) = sup B ’f($7t7y17"' 7y4)|7
(x7t7y17'“ 7y4)eAJVI

Ay =[0,1] x [0, T*] x [-M, M] x [—v/2M,/2M] x [-M, M]?.
For every T € (0,T*], we put
Ve ={ve L®0,T;H*NV):v € L®(0,T; H*nV), v" € L*(0,T;V)}

then Vr is a Banach space with respect to the following norm (see Lions [7])

lolly, = max { ol o aewy 10wy 10" zsorwn -
For every M > 0, we put
WM, T) = {veVp: HU”VT < M},
Wi(M,T) = {veW(M,T):v" € L>(0,T;L%)}.
Now, we construct a recurrent sequence {u,,} which is established by choosing the first term uy = 4y,

and suppose that
Um—1 € Wl(M, T). (3.1)

Then, we associate ([1.1)-(1.2)) with the following problem.
Find uy,, € W(M,T) (m > 1) satisfying the linear variational problem

{ (ulh (), w) + Aa(ul,(t), w) + pm (t)a(un(t), w) = (Fi(t),w), Yw € V, (3.2)
um(O) = Uo, U;n(()) = Uy, .
where
Fo(z,t) = flum—1](x,t)
= [ (z, t, um—1(,t), Vm—1(z, 1), u,_1 (2, 1), (Snum—1)(t)) ,
(St 1)(B) =S o (54,1). (3.3)

N 1 n )
pm(8) = 14 (Spum—1)(t) =1+~ Zizl Vg (5L, 0) [
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Then, we have the following theorem.

Theorem 3.1. Let (Hy), (Ha) hold. Then there are positive constants M, T > 0 such that, for uy = o,
there exists the recurrent sequence {u,} C W(M,T) defined by (3.1)-(3.3).

Proof. The proof consists of several steps.

Step 1. The Faedo-Galerkin approzimation (introduced by Lions [7]). Consider the basis {w;} for L? as
in Lemma 2.4. Put

ko
un (M) = W (tywj, (3.4)
where the coefficients cgi;(t), j=1,--- k satisfy the system of linear differential equations as follows

@ 1), w;) + Aa(@® (£), w) + s (B)alul (£), w))
= (Fm(t),w;), 1 < j <k, (3.5)
(k)

usn) (0) = Gk, ity (0) = drg,
where F,(x,t) is defined as in (3.3 and

J J

ok = Z’?Zl a(k)wj — g strongly in H?NYV, (3.6)
U1 = Z?:l 6](.k)wj — @7 strongly in H2 N V. .

After integrating, it can see that, the system ({3.5) is equivalent to the system of linear intergal equations

B (1) = G0 (1) + Ly eD)0), 1< 5 <k, (3.7)
where
() w5 ¥
_ J ANt
1 t
+ — 1— e M) (B (s), w;) ds,
o, ( ) (Fon(5), 05) )
L ()
Linsle](6) = =5 [ (1= €N g (s)ell) (s)ds, 1< 5 <k,
A Jo
®) — (ng,... 76572),
Omitting the indexs m, k, the system — is written as follows
c(t) = Ulc], (3.9)
where
C(t) = (Cl(t)v T ,Ck(t)),
Uld(t) = (Ur[e](t), -, Uklcl(t)) ,
Ujlel(t) = G4(t) + Lyl (t), 1 <j <k,
(k) 6(‘k) A\
G(t) =a;” + ,\]T] (1 —e J‘f) (3.10)
I ZaN (t—s)
Faw ) (L) () ) ds,
1 t
L) = -~ (1 - e_)"\j(t_s)> pim(8)cj(s)ds, 1< j < k.
A Jo

Applying the contraction principle, we can prove that the equation (3.9) has a unique solution ¢(t) in
[0, 7.
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1

Indeed, let v > 3 sup pm(s), it is known that X = C° ([0, T; ]Rk) is a Banach space with respect to the
0<s<T

following norm

k
c = sup e " |e(t c(t)], = ci(t)], ce X.
el x P lc(®)]y, el Zj:1| VIR

Clearly, U : X — X. We will prove that U : X — X is contractive as follows.
For all c = (1, ,¢x), d = (dy,--- ,di) € X, ¢ = c—d, and (3.10]), we have the following estimate

o -wael < 330 [ (1= o) o)l ds

IN

1
- s)|q(s)];ds < — su s)et
[ s < 5 s g1l x
1
= su e e—d :
poii pn(s)e™ || Il x

It follows that )
e |(Ue)(t) — (Ud)(t)], < N SUp pim(s) lle = dll; x
Yo<s<T

this leads to 1
Uc—-Ud < — su s)lle—d . 3.11
H H'y,X — )\ 0<3£ Mm( )H ny,X ( )

1
By 0 < — sup pm(s) < 1 and (3.11), we deduce that U : X — X is a contractive map. Then, the
Y0<s<T

equation 1} has a unique solution ¢ € X. Thus, the system 1} has a unique solution uﬁ,’i) (t) in [0, 7.
Step 2. Priori estimation. Put

s® = [a®)| + s @]
#ant) ([0 + 2o ) 2 Jaap o] 5.12)
t . 2 2 ¢ o 2
+2)\/0 <Hu§’;>(s) + ‘Aug’?(s)H )ds+2/0 Hug’?(s)

then we deduce from (3.5]) that

2
ds

t
S () = SB(0) + 2410 (0)( Aiior, Ay + 2 / pim(s) || A (5)
0

# [ o) (s

+ z/ot [(Fun(s), 1) () + @ (Fn(s), 1) (5)) | ds (3.13)

k) s)H2 + 2<Au§,’§>(s),Aug§>(s)>> ds

¢
+ 2/ a <Fm(8), u%’?(s)) ds — 24 (£) (Au®) (1), AR (1))
0

We shall estimate the terms Iy, --- , I; on the right-hand side of (3.13)) as follows.
Note that

1

IN

=14~ Z V-1 (52,1

1+2\|Vum-1( i <1+2M%

IA
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fzﬂw%l L) Yty (5)
we deduce from that
1< () <14 2| Va1 (0|50 <1+ 2M2, (314
O] < 411Vt 1 Ol [ Faty ()] 0 < 4122
By the estimates and the following inequalities
sy > afaado)|
s > [ulbe) o)
s > [au®o| +r|aad o] > 2va || au® | [aad o)
the integrals I, Is are estimated as follows
I = 2/tﬂm(s) HAu H 1+2M 2(1+2007%) / S®) (5)ds,
0 0
= [ i) ([0 k>sﬂ\+zxAu$N@,Aa%Ms»)ds (3.15)

1 t
§4M2(1+>/ SW) (s)ds
V) Jo (=)

On the other hand, we also have

|(Snum-1)(B)] < 721 Jumer (5] < = Z IVt (£)]
< llum=1llpeeo. vy < M,
Frg(z,t) = Diflum—1](z,t) + D3 flum—1](z,t)Vum—_1(z,t)
+  Dyf[um—1](z,t) Atupm—1(x,t) + D5 fum—1](x, t)Vu,,_1(z,1).

Then, we estimate |Fp,(x,t)|, ||Fnz(t)|, [|[Fm(t)|l, and I3, I4 on the right hand side of (3.13)) as follows

| Em (1’ t)l < Ku(f), 1Fme(®)]] < Kar(f) (1 +3M),
[ V14 ClEne @) < Kar(f) (14 3M) /14,

;=2 /Ot [(Fm(s), i®) () +a (Fm(s), ug?(s)ﬂ ds

= z/ot <”1*ﬂm($)H2 + HFm(3>”i)1/2 <Hu7(7’§)(s)H2 + Hug’f)(s)

2) 1/2 e
< TK%,(f) [1 T (14 3M)%(1+ c)} + /Ot SH)(5)ds,

t i(®) t 2 s+ L [ i ()|
=2 | a(Fu(s),il) () ds <2 | |1F(s)|2ds+ 5 Hum (5)
0 0 2 Jo

<ATK2,(f) (1 4+3M)*(1+¢) + iSﬁ,i‘:)(t).

We estimate I5 as below.

2
I = ~24m(0) Al (0, A0fH) (1)) < 15W0) + 5 (08B0

(3.16)

(3.17)

(3.18)
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Due to
| . 2 ") ’
oo < (m@aiol + [ entau o] as)
and
|5 o] | = fn@aio)+ i auto)]
(k)
< (1+2M?) Sm )\( ) ¢ any /st (1)
1+ 2M? 2) (k)
= (/= +4m Sy (1),
("4 W
we deduce that
2
|em 26D
t 8 . 2
< (@0l + [ [intorau 0] as)
0 S
20 A 112 o (14207 22 "ok
< 2|pm(0)]° [|Adg " + 2T* | ——=— +4M S5 (5)ds.
VA 0
Therefore, I5 is estimated as follows
1 8 _
I5 st(n)()"‘*Wm(O”QHAUon
2 (3.19)
§T* (HQ‘M 4M2) / Sk k)
AP VA
Combining (3.15)), (3.17) and (3.19)), it derives from (3.13)) that
t
S (1) < SE £ 7Dy (M) + Da(M) / S (s)ds (3.20)
0
where 16
SSE) = 25((0) + 4p1yn (0) ( Doy, Aiiny) + Y | (0)* | Adig |2,
Di(M) = 2K2,(f) [1 F3(14+3M)2(1+ c)} ,
4(142M?) 9 1 (3.21)
= B — ] 1 B —
Do(M) =2+ 3 +8M ( +ﬁ>
16, , (1+2M?2 2>2
+ =T —— +4M?) .
(U
Estimate S((]l:?z. We have
St = 2 sl + 2 @kl 2 + 210 (0) (I1ion 2 + | Adion )
3 N N 16 N
+2A HAulkH2 + 4 (0)(Atior, Dting) + 7#%(0) 1A%, (3.22)
=14 Z a3, (51) <142 ||iow| 3 -
By (3.6)), it follows from (| m ) that
s < %MQ, for all m, k, (3.23)
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where M is a constant depending only on A, (, g, ;.
We choose T' € (0,7*], such that

<;M2 + TDl(M)> eP2DT < 2, (3.24)
and )
kr =2 <2\f2 - A) \/9K]2W(f) +16MAVTATM < 1. (3.25)
Finally, by using Gronwall’s lemma, we obtain from (3.20)), (3.23)) and (3.24) that
S09(1) < A2e-P2(NT DM < pp2 (3.26)
for all t € [0, T, for all m and k.
Therefore, we have
ulf) € W (M, T), for all m and k € N. (3.27)

Step 8. Limiting process. From 1) we deduce the existence of a subsequence of {ufqli)} still so denoted
by the same symbol such that

u® s, in L(0,T; H2NV) weak*,
W ul, in  L®(0,T; H>NV) weak*, (3.28)
ak ull, in  L2?(0,T;V) weak,
Uy € W(M,T)
Passing to limit in (3.5)), we have u,, satisfying (3.2)), (3.3) in L?(0,T) weak.
Furthermore, (3.2)); and (3.28])4 imply that
u! = ANAUL 4 fn (t) Aty + Fyy € L0, T; L?),
so we obtain u,, € Wi(M,T), Theorem 3.1 is proved. [J
In next part, we introduce the space
Hp ={ve L*(0,T; H>*NV) : v € L*(0,T; H*NV)N L>®(0,T;V)}. (3.29)
Note that Hr is a Banach space with respect to the norm (see Lions [7]).
1Vl 2, = W0l Loc 075 1r200) + Hvl||L2(0,T;H2mV) + HU/HLOO(O,T;V) : (3.30)

We use the result given in Theorem 3.1 and the compact imbedding theorems to prove the existence and
uniqueness of weak solution of —. Hence, we get the main result in this section as follows.

Theorem 3.2. Let (Hy), (H2) hold. Then

(i) Prob. (LI)-(L.2) has a unigque weak solution uw € W1 (M, T), where the constants M > 0 and T > 0 are
chosen as in Theorem 3.1.

(ii) The recurrent sequence {un,} defined by (3.1)-(3.3)) converges to the solution u of (L.1)-(1.2)) strongly
mn HT.

Furthermore, we also have the estimation

[um — ull g, < Crky, for all m €N, (3.31)

where the constant kr € [0,1) is defined as in (3.25) and Cr is a constant depending only on T, f, U, U1
and k.
Proof of Theorem 3.2. (a) Existence of solutions.
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We shall prove that {u,,} is a Cauchy sequence in Hp. Let wy, = Um+1 — Um. Then wy, satisfies the

variational problem

(wrn (£), w) + Aa(wy, (), w) + pimg1(t)a(w (t), w)
= (Frus (1) — F(8) + (e (8) — pim(8)) Dt (), 0) , Yoo € V,
W (0) = w),(0) = 0.

Taking w = w), in (3.32); and integrating in t, we get

Xon(t) = 2 /O (Frn1(5) — Fon(s), wln(s)) ds + /0 st (5) [ (5)]2 ds

2 /0 (m41(5) — f1m(5)) {Dtim (5), i (5) s,

where
Xon(t) = (Wi (&)]* + i 41.(8) [wm ()2 + 20 / lwrn(s)]]; ds.

Now, we require the following lemma.
Lemma 3.3. Let u € Vy (as in Definition 2.5) be a weak solution of the following problem
u = by, — p(t)ug, = Fz,t),0<z<1,0<t<T,
uz(0,t) — Cu(0,t) = u(1,t) =0,
U(ZE, 0) = ao(I'), ut(xv 0) = a1($)7
to, 41 € VN H?, 1.(0) — (iip(0) = 0,
F e L*0,T;V), p € H'(0,T), u(t) > ps > 0.

Then, we have

S I/ 4+ () D) + A Ji |10/ (5)|2 s

- 1 . 1
> Ll 20) AT | + 5 () [ Au(s)]*ds
+f(f (F(s),—Au/(s))ds, a.e. t €[0,T).

Furthermore, if uy = 41 = 0, then there is an equality in (3.36]).

Proof of Lemma 3.3. The idea of the proof is the same as in [[7], Lemma 2.1, p. 79].

0 <t; <to <T and let wiy,(z,t) be a function defined as follows
Wi () =[O ()50 (2, 1)) * pr(t) * p1(1)] (1),

where
(1) Oy, is a continuous, piecewise linear function on [0, 7] defined by

0, te
1, te
Om(t) = m(t—t; —1/m), te
—m(t—ta+1/m), te

t1 + 1/m, to — l/m],
t1+2/m, ty — 2/m],
ti1+1/m, t1 +2/m]
tg — 2/m, tg — 1/m]

I

)

(ii) {px} is a regularized sequence in C°(R), i.e.,

o € CX(R), supp py C [~1/k, 1/K], pi(—t) = pu(t), / pr(t)dt = 1

—00

(iii) (%) is a convolution product in time variable, i.e.,

o0

(u*pg)(z,t) = / u(z,t — s)pr(s)ds.

—00

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

Fix t1, to,

(3.37)

(3.38)

(3.39)

(3.40)
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Taking the scalar product of the function wg,,(z,¢) in (3.35)1, and then integrating with respect to ¢
from 0 to T, we have

where

T
Ay, = /O (W (1), Wi (1)),

T
Bom= A / At (t), wim (1)) dt,
0 (3.42)

T
Chom = /0 () a(ut), wim (1)) dt,

T
Dim = /0 (F(8), wim (1)) .

By using the properties of the functions 6,,(t) and pg(¢), and making some lengthy calculations, we have
that

T
lim Akm:/o em(t)e;n(t)uu’(t)HZdt,

k—o0

T
lim By = —A / 02,(t) | Ad (1) dt,
k—o0 0

it Gl = [ 0 (00, (O0) [Bu®) e + 5 [ (0 [ Bu(t)]*at,
k—o00 0 2 Jo
T
lim Dy, = [ 0%, (8)(F(t), Ad/(t))dt.
k—o0 0
Letting m — oo, we obtain from ([3.41))-(3.43]) that
1, 2 1, , 2 t2 , 2
e - S - A [ s a
t1
1 2 1 2 1 2 / 2
gt [Au(t)|? = Sulta) | Au(e) + 5 [ (0 | Aute) e
1
to
= / <F(t),Au/(t)>dt, a.e., t1,ta € (0,7), t; <ta <T,
t1
or
1 / 2 1 2 b2 / 2
3 )2+ Guta) e P+ A [ o) s
1 f2 / 2 2 /
5 [ i Iau s+ [T, sl ()ds
. 0 . - (3.44)
2 2
= Sl + Gt 1+ 3 [ v )] as
1 h / 2 h /
—5 | W@ Iau@) s+ [P, Au ()

a.e., t1,t2 € (0,T>, t <ty <T.

From , by taking to = t and passing to the limit as ¢t; — 04 and using the property of weak lower
semicontinuity of the functional v —s [|v||, we obtain .

To get the equality in (3.36), we extend u, F by 0 and p by p(0), respectively as ¢ < 0. Moreover, we
note that the equality is true for almost t; < to < T. Hence, by taking ¢; < 0, the integrals on the
right-hand side of is 0. Then, by letting t; — 0_ and using ug = u; = 0, we have the equality in
(13.36)).
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The proof of Lemma 3.3 is completed. [J
Remark 3.1. Lemma 3.3 is a relative generalization of a lemma given in Lions’s book [[7], Lemma 6.1,
p. 224|. .
Note that wy, = tm+1—um € Vr be the weak solution of the problem lb coresponding to ug = a1 = 0,
p(t) = pms1(t),
F(t) = [pm+1(t) = pm ()] Aum + Frnga (t) — Fi(2).

By using Lemma 3.3 with 4y = @3 = 0, we have

1 1 t
3 I+ s (@) 18w (O 3 [ A (0] s

=5 [ (o) w5 s (3.45)

[ i (5) = 5] B (5)+ Fra () = Fon(s), =l () s

Put
Vin(t) = [y (O] + s (£) [ Ay ()] + 22 /0 | A, (s)]” ds, (3.46)

we have

Yin(t) = /0 e (5) | Awn(5)] ds
2 [ e (5) = (9] (Bt (), =l () s (3.47)

+ 2/0 (Frn41(s) — Fp(s), —Awy,(s)) ds.

It follows from (3.33)), (3.34), (3.46) and (3.47)) that

50 = [ s ) (R ) + 1B s

0
+ 2/ (Fng1(s) = Fi(s), w),(s) — Awy,,(s)) ds
0

(3.48)
+ 2/0 (Hm41(8) = i (3)) (Aum(s), wy, (s) — Awf, (s))ds
=J1+ Jo+ J3,
where
S (t) = X (t) + Yo (1)
=l + T OI + 2 0) (lom (@ + Ao (0)]) (3.49)
S /Ot () + Aty )] ds.
We shall estimate the terms Ji, Jo, J3 on the right-hand side of as follows.
Estimate of Jy. Note that
|1 ()] < 41 Vum ()l ||V, ()] o < 4M2, (3.50)

we deduce from (3.49) that

t

le/o 1 (s) (me(s)|y§+||Awm(s)||2) ds§4M2/0 Zm(s)ds. (3.51)
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Estimate of Jo. By (Hz), it is clear that
1Fms1(t) = Fa(Oll < 3Ku(f) [IVwm—a (0] + [|wp 1 ()] < 3Kn(f) lwm—1ll gy,

hence
o =2 /0 (Fons1(5) = Fun(s), () — Aut, (s)) ds

t ’ 2 / 2 1/2
< V2K () il || (o + autya)]) ™ ds (352

<5 [ () + fawh @) ds+ TR ol

36

TR () lem-

1
< -=Sm
< 7 Om(t) +
Estimate of J3. We have

1 n
o 1(6) = O] < = 37 [V (52,6) = [V (52,)

< (IVum®)llcogo,) + 19m-1llcoqo, ) 17m-1(8) ooy

1/2
< AM (Vw1 (&) + [ w1 (1))

(3.53)

Hence, J3 is estimated as follows
¢
J3 =2/0 (Hm+1(8) = p(5)) (Dum(s), ), (s) — Awj, (s))ds
t 1/2
2 2
< 8v/aM? me—lHHT/O <Hw;n(s)}|a+ |awf,()]?) " a

A , 64
< 2/ (HWMS)HEJF | Awp, (s)]] ) TTM -1,
0

1 64
< il
< 4Sm(t) RS
It derives from (3.48)), (3.51)), (3.52)) and (3.54) that

t
Sp(t) < §T (9K, (f) + 16M*) w17, + 8M2/ Zm(s)ds. (3.55)
0

(3.54)

2

Using Gronwall’s lemma, we deduce from that
il < br leomoill g, Vm €N, (3.56)
where kr € (0,1) is defined as in (3.25)), which implies that
[t = tmpll g, < lluo = will g, (1= k)~ RF ¥m, p € N. (3.57)
It follows that {u,,} is a Cauchy sequence in Hp. Then there exists u € Hp such that
U, — U strongly in Hyp. (3.58)
Note that u,, € W(M,T), then there exists a subsequence {w,, } of {u,,} such that

U, — U in  L°(0,T; H> NV) weak*,
Uy, — U in L®(0,T; H>NV) weak*,
u;’lj — in L?(0,T;V) weak,

ue W(M,T).

(3.59)
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We also note that
([ Fm — f[U]HLoo(o,T;B) < 3KEum(f)llum-1 — UHHT )

(3.60)
lpm = | oo oy < AM [Jum 1 — ull g, -
Hence, from (3.58) and (3.60)), we obtain
Fp —  f[u] strongly in L>(0,T; L?), (3.61)

i, —> plu] strongly in L>°(0,T).

Finally, passing to the limit in (3.2)-(3.3) as m = m; — oo, it implies from (3.58)), (3.59))3 and (3.61)
that there exists u € W(M,T) satisfying (2.8))-(2.10).
Furthermore, (1.1); and (3.59)4 imply that

u” = AAU + plu)(t)Au + flu] € L>=(0,T; L?),

so we obtain uw € Wi (M, T). The existence proof is completed.
(b) Uniqueness of solutions. .
Let uy, ug € Wi (M, T) be two various weak solutions of Prob. 1}1} Then u = u; —u9 € Vp be the
weak solution of the problem (3.35]) coresponding to @p = @1 = 0, u(t) = a1(t), F(t) = [ (t) — f2(t)] Aug +

Fl (t) — Fg(t), where
Fi(x7 t) = f[ul](x7 t) =f (:Ea t, ui(x7 t)a vu%(fca t)v u;(:n, t)a (Snuz)(t)) )
pai(t) = pluil(t) = 1+ (Spu) (1), i =1,2.

Similarly, by using Lemma 3.3 with @y = @, = 0, we have

(3.62)

20) = [ () (Il + |Au)]?) ds
+2 /Ot (Fi(s) — Fa(s),u'(s) — Au/(s))ds (3.63)

+2 / i1 (5) — fi2()] (Aua(s), w/(5) — Aw/(s))ds,

where

2(t) = [ O + |/ @ + i (e) (lu®)]2 + | Au@)]?)

n m/ﬂt (I + [ aw(s)]?) ds.

Moreover, we also obtain the following estimate

(3.64)

Z(t) <8 (M2 + §(9K§4(f) + 2M4)> /t Z(s)ds. (3.65)
0

Using Gronwall’s lemma, it follows from (3.65) that Z(t) = 0, ie., u1 = ua.
Theorem 3.2 is proved completely. [J

4. The convergence of solutions of (1.1)-(1.2) as n — oo

In this section, we shall consider the convergence of solutions of (P,) to the solution of (P) (I.1])23-
(1.7) as n — oo as follows.

For each n, (P,) has a unique weak solution u", i.e. u™ satisfies the following problem

(ufy(£), w) + A (), w) + (1+ (Sau)(®))
") (1)),

" (4.1)
= (f (ot u™ (1), ug (6), ug (t), (Snu”)(1)) , w)

a(u"(t), w)
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for all w € V, a.e., t € (0,T), together with the initial conditions
u™(0) = dg, uy(0) =ay. (4.2)

By Theorem 3.2, there exist positive constants M, T independing on n such that (P,) has a unique weak
solution u™ which satisfies
u" € Wi (M, T), for all n € N. (4.3)

From (4.3), we deduce that there exists a subsequence of {u"}, used the same notation, such that
u" —u in L®(0,T; H>NV) weak*,

uf — ' in L*(0,T; H? NV) weak*, (4.4)
ut. —u” in  L%*(0,T;V) weak*.

Applying the lemma compact embeding of Lions [7], there exists a subsequence {u"}, used the same
symbol, such that

u® = in  L?(0,T;V) strongly, (4.5)
up — o' in  L2*(0,T;V) strongly. '
Because u™ is the unique weak solution of (P,), so
T T
| e wheae +1 [ atu @), )t
T T
+ [ atwr@wewdn+ [ Gt oot (0, w)eld (46)
0 0
T
= [ Um0, 5w w e,
Yw eV, Vp € C(0,T).
By ([{.4)5 and ([£.5)1 we get
T T
e > [ @),
0 0
T T
/ a(u Y(t)dt — / a(u(t), w)p(t)dt, (4.7)
0 0
T T
)\/ Yo(t)dt — )\/ a(u'(t), w)p(t)dt.
0
We have to check the convergences
<i> ff( i ><t>a<un< Jow)p(t)dt = [y [lus(B)]” alu(t), w)p(t)dt,
) Jo t), uy (), ug' (t), (Snu )( )) w) p(t)dt (4.8)
- fo (F (£ u(0),ue0), 0 0), 3wy, )dy) ,w) p(t)dt.
Then, we need the following lemmas.
Lemma 4.1. The following convergences are confirmed
() ||Sw = Jy s, ) y\ .
= ,Ody| dt — 0, as n — oo,
Iy |(Snu)(®) = fi uly.t y\ (49)
(i) ’ S = Jy w3 () y’LQ (0,7)
—fo Spu(t) — |Jug(t) H’dt—>0 as n — 0.




Le Thi Phuong Ngoc, et al., Results in Nonlinear Anal. 5 (2022), 191-212| 207

Proof of Lemma 4.1.
Proof (i). We note that

LY a5 = [ et ve e (o). (410)

Since u € L>®(0,T; V) — L*(0,T;C°(f)), so the function y — u(y,t), a.e. t € [0, T] belongs to CY(£),
then,

g e ! )
(Spu)(t) = Ezizlu (=4t) — /0 u(y,t)dy, as n — oo. (4.11)
Note that ) )
((Sn)(] <~ Ju (GO < = e ()] < M,

! (4.12)

[ty < s 01 <

SO 1
‘(Snu)(t) / u(y,t)dy| < 2M, (4.13)

0

for all n € N and a.e. t € [0, T]. Applying the dominated convergence theorem, we deduce that (i) is valid.
Proof (ii). By u € L®(0,T; H>N V), we have u, € L*>(0,T;V) < L>(0,T;C"(Q)). With the same
argument as in proof of (i), we have

2

T
201 /0

Lemma 4.2: The following convergences are confirmed

. 2
Sou(t) — |lug())|?] dt = 0, as n — . (4.14)

1
Snu _/ Ui(y, )dy
0

Lemma 4.1 is proved. [

(i) HSnUn - SnuH%Q(O’T) — 0, as n — o0,

2
. n ol ‘
(ii) ’ Spu” = [o u(y,-)dy 20 2 (4.15)
= fOT Spu™(t) — fol u(y,t)dy‘ dt — 0, as n — oo.
Proof of Lemma 4.2.
Proof (i). We note that
1 n . )
Spu(t) — Spu(t)| < — u (L) —u (Bt
S () = Su(®) < = > o (5 8) —u (5| (4.16)
< (1)~ u @)y, < I @)~ u @)y
By (4.5))1, we deduce from (4.16]) that

Proof (ii). It follows from Lemma 4.1 (i) and (4.17)) that

< [[Spu” - SnU”L2(0,T) +

1
Snu”—/ u(y, -)dy
0

L2(0,T)

1
Spu — / u(y, -)dy
0

L2(0,T)
— 0, asn — oo.
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Lemma 4.2 is proved. [J
Lemma 4.3: There exists a subsequence of {u"}, still denoted by {u"}, such that
(i) ’ Sou™ — Spu — 0, as n — oo,
CO([O T])
(i) {| S = f3 e2(w,-) y] o) (4.18)
_fo Spu(t) — |uq(t H‘dt—)(] as n — o0.
Proof of Lemma 4.3. By (4.9) (;), we obtain
X 1
Spu™ — / u3(y,-)dy
0 L2(0,T)
1
< ]Snu” — S + Snu—/ w2 (y, )dy
L2(0,T) 0 L2(0,T) (4.19)
1
+ Snu — / ui ,-)d
co([o,1]) 0 (v, )y L2(0,T)
— 0, as n — oo.
This implies (4.18))(;;) holds. We prove (4.18); only.
By u™ € W(M,T), we get that
ut € CO([0,T); H2NV) N C ([0,T); V) NL>®(0,T; H*N'V),
up € CV([0,T); V)N L>®(0,T; H>NV), (4.20)
Hun”LOO(o,T;H2mV) <M, ”ugHLOO(O,T;HQﬂV) < M.
Consider the sequence {h,} defined by h,, = ul.
Then, by H' — C°([0,1]) = E, we have {h,,} c C° ([0, T]; H') c C°([0,T}; E) .
We shall show that there exists a subsequence of {h,}, still denoted by {h,}, such that
Ry, — ug strongly in C° ([0, T]; E). (4.21)
Using Ascoli-Arzela theorem in C° ([0, T]; E), we shall prove that
(i) {hn} is equicontinuous in C° ([0, T]; E), (4.22)
(jj) For every t € [0,T], {hn(t) : n € N} is relatively compact in E. '
Proof (4.22] -(] For all t1, t2 € [0,T], t1 < t2, Vn € N, by (4.20) (35, we have
[n(t2) = hn (1)l
to to
= / Rl (t)dt|| < / | hn ()| 5 dt
t1 E t1 4
ta tg (4.23)
= [ hOlpdr < V3 [ ol
1 1
< V2lts — il [uf | oo 0,7 20wy < V2M [tz — t].
This implies (4.22)) ;) holds.
Proof (4.22)) ;5)- By (4 20) (), we have
1 (D) g1 = Nug @l g1 < " Ol g2y < 6"l oo 0,0m201) < M- (4.24)
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Because the imbedding H! < C°([0,1]) = E is compact, then there exists a convergent subsequence of
{hn} (in E). This implies (4.22));;) holds.
From (4.22)), we deduce that there exists a subsequence of {h,}, still denoted by {h,}, such that
h,, — h strongly in C° ([0, T]; E). (4.25)
Due to C° ([0, T); E) — L? (Qr) , we have that
h, — h strongly in L? (Qr). (4.26)
On the other hand, from (4.5])(;), we obtain

hn = u” — u, strongly in L? (Qr). (4.27)

It follows from (4.26]) and (4.27) that h = u,, thus (4.21) is proved.
On the other hand, from (4.3]), we obtain the following estimation

S (1) = Suu®)] < 37 [Jut (5L = s (5L, 0)
< (lug Ol g + lluz Ol g) lug &) = ua ()] g (4.28)
< V2 ([luf Ol + lluw (O ) 1 (8) = ue ()]

< 2V2M |Juff — el oo 0,17, ) -

Hence

u o001 < 2\/§M Hug - uxHCO([O,T];E) . (429)

From (4.21)) and (4.29), we obtain (4.18) ;) holds.
Lemma 4.3 is proved. [J
Now, we continue the proof of (4.8]).

Proof 1' (i)- Note that ‘(S'nu")(t)‘ < 2M?, we obtain

T

T A
/ (Snun)(t)a(un(t),w)@(t)dt—/ s (£)11* a(u(t), w)p(t)dt
0 0

T ~
SA(&MWWWWQ—MWMMMﬁ

T ~
aék&wwwwwmﬂmwwwmww

< 2M? el 20,y lwlly 1™ = ull 20 7.1

1
Snun_/ u?v(!%)dy
0

(4.30)

+ ||u||Loo(07T;V) HwHV ||90||L2(0,T)

L2(0,T)

1
Snun _/ u?ﬂ(yv )dy
0

< M |lwlly [lell 20,7 [2M " =l oo, zivy + ‘ L2( )] '
0,7

It follows from (4.5))1, (4.18))(;;) and (4.30) that (4.8))(; holds.
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Proof (4.8))(;;). We have

T
/0 (f (& u™(t), ug (£), w (), (Spu”)(E)) , w) @(t)dt

_ /OT <f (t,u(t),ux(t),ul(t), /Olu(y,t)dy> ,w> p(t)dt

T
N /0 (f (&, u™(t), ugy (t), ug' (t), (Spu™)(t))

N (4.31)
g (t,u (0.0 0. [ u(y,wdy) wyo(t)ds

+/OT <f (t,u”(t),uﬁ(t)yul?(t)’/Olu(%t)d?/>

1 (w00, | 1 . 0dy) ) ple)i
=J + Jo.

Proof J; — 0. We note that

‘f (£, u"(8), u(8), ul (1), (Spu™) (1)) — f (t,u"(t),ug(t),u?(t), /01 u(y,t)dy>‘ )

< Km(f) ’(Snun)(t) - /Oluw,t)dy’-

Therefore, we deduce from (4.15)) ;) and (4.32), that

1
i < Kad) ol Vol [Soa” = [ty )

LQ(O,T) (433)
— 0, as n — oo.

Proof Jo — 0. We have

1

Hf <t,u"(t),u;(t),ug(t), ) u(y,t)dy> —f (t,u(t),ux(t%u’(t),/olu(y,t)dy>H
< 2K (f) (luf () = ua ()| + ||ug () — ' @)]]) -

Therefore, we deduce from (4.5) and (4.34]), that

(4.34)

Ty <260 (D 10l 19l 202y (10" = wll oz + 168 = | 2oz |

— 0, as n — oo.

Thus, it follows from (4.31)), (4.33)), (4.35), that (4.8)(;;) holds. [J
Finally, letting n — oo in (4.6)), we deduce from (4.7)), (4.8), that w € W (M, T) and satisfies

(4.35)

T T
| @ o.weie [ ot @, e
0 0
T
2
+ [ (1 s O atu(e) wietryar (4.36)

-/ ' (1 (a0 w0, [ uly, Ddy) ) plo)i
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for all w € V, p € C°(0,T), together with the initial conditions

u(0) = g, u'(0) = . (4.37)
Consequently,
(! (8), w) + Aa(w' (£), w) + (1 + [lua(8)]?) alu(t), w)
= (f (Bu(t). wat). o (0), [ uly, )dy) ) Vo € V. (438)
u(0) = g, u/(0) = i,
u e W(M,T).

Furthermore, (1.7) and (3.59)4 imply that
W' = AW + (1 + Hux(t)||2> Au+ flu] € L®(0,T; L?),

so we obtain u € W1(M,T). The proof of the existence is completed.
Next, we are easy to prove the uniqueness of solutions of (P).
Finally, we have the following theorem.
Theorem 4.4. Let (H1)— (H2) hold. Then there exist positive constants M, T > 0 such that
(i) (P) has a unique weak solution v € Wi (M, T).
(73) The solution sequence {u"} of (P,) converges to the weak solution u of (P) in sense

u = u in L®(0,T; H>NV) weak*,

up - in L°°(0,T; H*NV) weak™,

ut. —u” in L*0,T;V) weak, (4.39)
u = u in L%(0,T;V) strongly,

up — ' in L2(0,T;V) strongly.

Remark 4.5. The above method still holds for the problem (1.1)-(1.2) in which (Spu)(t) and (S, u)(t)
are replaced by the following arithmetic-mean terms

—

n—1 n—

(Sa)H) == u (20.1) , (Swu)() = iZui (1), (4.40)

n
=0 1=

respectively, where 6; € [0,1), ¢ = 0,n — 1, are given constants.

5. Remark

We remark that the methods used in the above sections can be applied to the following problem
again, and we also obtain the same results as above.

Ue — Migns — B ((Snu)(t), () () ) U

(Pn) = f (m,t,u, Ug, Ut, (gnu)(t)a ( An“)(ﬂ) 5 0<z< 1) 0<t< T,
uz(0,t) — Cu(0,t) = u(1,t) =0,
u(,0) = (), ue(w,0) = iy (),

where A\ > 0, ¢ > 0 are given constants, B, f, o, 1 are given functions and (S,u)(t) = % Z;:ol u? (%, t) ,

(Spu)(t) = 4 ?;01 u? (Hg",t) , 0, €[0,1),i=0,---, n—1 are given constants.

T n n
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Moreover, we can prove that the weak solution of (P,) converges strongly in appropriate spaces to the

weak solution of the following problem

it = Ntz = B ([[u(t)?, e (8)]) e
P = f (et @) @), 0<z <1, 0<t<T,

uz(0,t) — Cu(0,t) = u(1,t) =0,
u(z,0) = to(z), u(z,0)=1u1(z),

1 1
where [[u(t)[|* = [y u?(y, )dy, [lu.(t)|* = [y u2(y,t)dy.
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