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Abstract

In this paper we are discussing a nonlinear system that is descriptor, multi derived from the Caputo-
derived type as well as Riemann-Liouville fractional integral and has been relying on a system solu-
tion using a homotopy perturbation method method. In addition, three examples were given to illus-
trate the method of solving the system in order to compare the results obtained.
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1. Introduction

We can express descriptor systems, in their other name, which are called descriptor systems, some-
times referred to as algebraic differential systems, which are a generalization of dynamic systems
[2]. Problems related to fractional differential equations, including fractional convection and disper-
sion, are studied. [8], certain types of time-fractional diffusion equations [15], fractional generalized
Burgers’ fluid [16], fractional KdV-type equations [3], space-time fractional Whitham-Broer-Kaupand
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equations [4], fractional heat- and wave-like equations [12], and space fractional backward Kolmogorov
equations [10]. Recently, proposals have been made to solve differential equations using the homo-
topy perturbation method (HPM) [5,7]. Some mathematicians have used the HPM method to solve
discrete domain [28]. Dawood, L., et al., (2020), presents the application of (VIM) and (MHPM) to
solve the Volterra integro-differential equations [18]. Eshkuvatov, Z. (2022). developed (NDHAM) is
demonstrated for (NIDEs) [19]. Naik, P. A., et al., (2022), proposed and analyze a nonlinear fraction-
al-order SEIR epidemic model to transmit HIV [20]. Olayiwola, M. O., et al. (2023), studied utilized
a novel SEITR mathematical model to investigate the impact of treatment on physical limitations
in tuberculosis [21]. Polat, S. N. T., et al. (2023). Presented the (HPM) for solving non-linear delay
of multi-term fractional order [22]. Kayota, S. et al. (2023). Introduced the application of the (LVIM)
and (LHPM) to some (FIDEs) [23]. Yang, H. et al. (2024). Study (CSRP) for fractional-order linear
continuous-time systems with order 0 < a <1 [27]. Moumen, A., et al. (2024). proposed strategy uses
first-order shifted Chebyshev polynomials and a projection method [25]. AlBaidani, M. M. (2025). A
comparison of approximate and exact solutions to the TF-GBFE equation was made. [26]. Yisa, B. M.,
et al. (2025). (HAITM) developed some problems in the results are presented in tabular form, as well
as in 2D graphs [27].

In this paper is consists of three sections. section one is introduction, section two deals with some
of the basic mathematics concepts and principles of descriptor fractional order system. finally, section
three is the descriptor homotopy Perturbation method of solution fractional order system is discussed.

2. Fractional Derivatives and Fractional Integration

Definition (2.1), [11]: The Riemann-Liouville fractional integral operator of order o> 0 is defined as:
1 t

I“f(t) = —— |(t —x)* f(x)dx,a > 0,x >0 1

(f(t) F(a)£< %) f@)dx, @ > 0, x (1)

Definition (2.2), [11]: The Riemann-Liouville fractional derivative operator of order o« >0 is defined as:

1
Dif(t)y = —— 2
M) = iy dt (2)
where n is an integer and n—1<a <n.
Definition (2.3), [11]: The Caputo fractional derivative operator of order a is defined as:
1 a-
‘DI(t) = —— |(t —x)" " — f(x)d
C£(t) F(n_a)£< X7 fedx (3)

where n is an integer and n—1 <o <n.
Now, the following properties of fractional integro-differentail equation can be found in [16], [17],
[20].

Properties (2.1):
1) Olfoltf( AP f ()forocﬁ>0

)
2) OItth (t) ()forocﬂ>0
8) L7 Drf(l)= f(t)—f(O),O<oc<1.

3. Homotopy Perturbation (Method of Solution)
Consider the descriptor multi- fractional integro - differential nonlinear system

E[D’u(t)+Du(t) ][+ FD u(t) = Bg(t)+ CI"M(t), t [0,G], 4)
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U o

u(0)=u, = ,n<a<f<y<d<n-1,
Us o

where Dau(t), D’u(t), Dﬁu(t) is Caputo fractional derivative of u(t) E,FeR™™ be a singular

matrix,B, C e R™", I"‘u(t) is the fractional order operator in the Riemann-Liouville fractional inte-
gral, and M(t) is linear continuous function with the following:

E, O F, K
1) E= 11 , F= 11 12 , :E11 c R ,,F22 c RN
0 0 F21 F22

1“M, (ul(t))}

) IaM(u(t)):LaM (u, (1) |

B, B C C
1) B :{ 1 12 }, C= { 1 12 }, by conditions above, we can get
B21 B22 CZI 022

E[D’u(t)+D"u(t) |+ FD u(t) = Bg(t) + CI"M((t)

Y S s e i el e

Hence
{EHD%1 (t)+E,, D'y, (t)} {FHDﬂul (t)+F,D’u, (t)} _ {Bngl (t)+B,g, (t)}
0 F,,D’u, (t)+F,,D’u, (t) B,,g; (t)+ Byyg, (t)
+[CHI“M1 (1 (t))+ CpuI*M, (u, ( )}
Cyy M, (1, (£))+ CppI*M, (u, (t))
We can get,

Dy, (t) + D", (t)
D’u,(t) + F,, ' F,,D’u, (t)

E, " B, g, () + B, B, g, (t) + E,'C "M, (u1 (t)) +E,7CLI"M, (u2 (t)) 5)
= —E,, 7 F, D u, (1) - By, 7 F,D uy (t)
Fy, ' By gy (8) + By Byy gy () + Ky, ' Coy I"M, (u1 (t)) + By, ' Cop I"M, (u2 (t))

W . . ) 3 | A (u) L
e can rewrite equation (5) as: u(u)-g(x)=0, here u(u)= (W) The operator p can be divided
Ho(u

into two parts ¢, and o, where ¢, is a linear operator and o, is a nonlinear operator, we can get

¢, (u)+, (u)-g(x)=0, Where ¢, (u) = {%“( )}Z{Dﬁul(t)JrDyul(t)] and

Py, (1) D’u, (t)

E, "B, g ) +E, " B,g,t)+E,"C,I"M, (u1 (t)) +E,,7C,I"M,M, (u2 (t))
o,(u) = {wl’# (u)} = N Elli1 FuDﬁ W (t) - E1171 F12Dﬂ Uy (t)
o, , () F,, 7 By g, (8) + Fyy ' By, g, (1) + By, 'Cyy 1M, (u1 (t)) + Fyy ' C,yp "M, (u2 (t))
- F2271 F21Dﬁu1 (t)
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. . VilX,P
According to homotopy perturbation method, we can construct a homotopy v, (x,p) = { ' ( e )]
which satisfy: Vo (Xz ’pz)

vy (%0, ) RT xRY 5 R, vy (x,,0,) : R xR™™ - R

b

by P2
_ pl n 1 n-r _ p2,1 _ p2,2
p= ,peR”, p, eR", p, eR" ™, suchthatp, =| 7" |,p, = . ,p“6[0,1],m=1,2,8,...,r1.
Py : : L
pm,l pnfm,Z

v
Now, construct a homotopy v, = { 1} such that
Vs

H, (Vl,pl) (I_pl)[(pl,y (V1)_‘P1,,1 (u1,0)+p1|:/~1(vl)_g1 (t)] 0
$(vaop)=| = =10 6)
2 (V27p2) (I — Py )[‘Pz,u (Vz ) —Ps (uz,o ) + pz[,u (V2 ) ~ 8 (t)]
The homotopy that formed v, (x, p) achieves the following equation
Hl(vl,pl)}g(v’l): H, (vl,I)}
H, (Vz’pz) H, (VzaI)
(I-p,)[ D0, (t) - Duy (1) |

+Dp, [D‘S v, (t)-D'v,(t)-E,, " B, g,(t) + E,, " B, g,(t) - E,,7'C,,I"M, (u1 (t)))
-E,,'C,I"M, (u2 (t)-E,, ' F,Du, (t)-E, ' F,D’u, (t)] -

(I-p,)[ D v, (t) = D u, o (1)
+ Py [Dﬂ Uy (t) + Fzz_l F21Dﬂ v (t) - Fzz_l B, g, (t) - Fz2_1 By, 8, (t)]
~-F,,'C,, I"M, (u1 (t),u, (t))) ~-F,,'C,,I" M, (u2 (t))

Where u o, U, can be obtained from an equation (4), S0

H, (vl,o)} i {[D‘SUI (t)-Duy, (t)q ) [o}

H, (VQ,O) [D%Z (t) - D‘suz,0 (t)] 0

'H, (v,.])
H, (V2 ,I)
D? v, (t)-D"y, (t) - EH*1 B,, g, (t)+ E1171 B,, g,(t)

= —EH_lCHI“ M, (u1 (t)) - EH_lClZI“ M, (u2 (t))

+E1f1 F11Dﬂ v (t)+ E1171 F12Dﬂvz (t) (8)
« Dﬁvz (t)+ Fzz_l leDﬁ v (t)— Fzz_l B, g,(t) - F22_1 By, g, (1)

—ngflCZIIa M, (u1 (t)) — F2271022 M, (u2 (t))

B 0
“lo

3(v,0)=

9(v,1) =
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It is noticeable that the processes of change that p from zero to unity is just that of 9 (Vh,p) from
[D%l (t)-Du,, (t)} .
’ (0]

Dv, (t) = D’uy, (t)

D‘su1 (t)-D’v, (t)-E,, ' B, g, (t) + E,, " B,, g, (t)
-E,,'C,,I*M, (u1 (t)) ~E,,'C,I"M, (u2 (t))
+E,, " F,DPu, (t) + E;, 7 F,DPu, (t) 9
Dﬁvz (t) + F2271 F21Dﬁ v (t) - F2271 B,, g, (t) - F2271 By, 8, (t)
-F,,'C,, I"M, (u1 (t)) - F,, 'C,,I"M, (u2 (t))

We can take advantage of a topic in topology where we call the amount deformation
D’v, (t) -D’u,, (t)

X X o s and the other part

D°v, (t) = Duy (£) + By, 'y (Do () - DPuy 4 (t))

'Du,(t)-D7v,(t) - E,, " B, g,(t) + B, " B, g, (t)
- EHJCHIO‘ M, (u1 (t)) - EH*lClZIa M, (u2 (t))
+ E1171 FHDﬂ u, (t) + Elfl FlZDﬁ u, (t)

D’ Uy (t) + F22_1 leDﬁ v (t) - F22_1 B,, g, (t) - F22_1 By, g, (t)

- F22_1021Ia M, (u1 (t)) - F22_1C221"‘ M, (u2 (t))

can be called a homotopic equation.
vy (t)
vy (t)

Now, we consider that [ } is the solution of the equation (7),

00

kv (t
O st st 2ot @
\& (t) ngzo(t)"'plzvzl(t)+pgv22(t)+”' S
; . ; Vo (T
;pz 2,k( )

We can get the approximate solution to the descriptor equation (4), as follows,

(11

l:ul (t)}: phi)nlvl ®)] :Z:;vl,k (t)

lim =
p>12 (t) 2 Vo (t)
k=0

by substituting equation (10) into equation (7), we get
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H, (V2,p2)

{Z pD’vy (t)} ~D%u, o (t) + p, D’uy 4 (£)
k=0
D, {_En_lCnIa M, [Z prLk (t)}
k=0

_E11_1C121a M, [Z plzevz,k (t)J

k=0
_En_l B,g )+ En_1 B, g, (t)}

+E1f1 F, |:Z prﬂ Vik (t)} + E1f1 F, {z plzeDﬁ Vox (t)

k=0 k=0

) {ipryvl,kmﬂ
k=0

Z psDPv,, (t)} —DPuy,(t) + p,DPuy 4 (t)
k=0

+p, ﬂ—]ﬁ‘mlc22 I“M, (z p};VZk (t)ﬂ
k=0

_F2271021Ia M, [Z pf Vik (X)J - F2271
k=0

H, (val)}

B, g, (t) - F22_1 By, g, (t) + F22_1 F, {Z prLk (t)}}

k=0

By the equation (9), we get

D’ (pfvl’o (t) + inL1 (t) + p12V1’2 (t) + )
—D‘sul’o (t)+ plD‘suLO (t)

P {_Eu_l C, I* M, (Z prLk (t)] ~E,7C,I"M, [Z p; D’ Vak (t)]
k=0

k=0
B, By g, () + By, Bpygy(t)]
+E,, " F,Df (pfvl,o @)+ pyvy, () + Py v, 5 (t) +) {E,F,
D’ (pgvz,o (&) + pévl1 (t) + p%vZ’Z (t) + )] -0
D7 (pYVy 0 (£) + Py (6) + P2V, (8) + )]

D (D3vy 0 (1) + D5V, (1) + D3V, 5 (1) + ) = Dy (£) + p,DPu, 4 (8)
+P, {—Fzzl(}22 "M, (Z pgvlk (t)ﬂ
k=0

_Fzzilcmla M, (z pfvl,k (t)J - F2271 By, g, (t) - 1:‘2271 By, g,(t)

k=0

By By | D7 (B0, () + D}va, (6) + B{ v, () +++-) | = 0

|

(12)
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Now equating same power of p of equation (12), we get

py |_[ Dvig(t)=D’uy,(t)=0 (a3
pg Dﬁvz0 (t) - Dﬁuz’O (t) 0

v
The first, we find solution { Lo }, using multiply both side, of the equation (13), by the Riemann-
Va0 s
Liouville fractional integral operator { }

17
D°v,, (£) + D'v, o (t) + Du, o (£) + D', o (8) — B, 7" By g, (1) + By, 7 By g, (1)
X _E1171C11Ia M, (V1,0 (t)) - Enilcmla M, ((Vz,o (t))
l:pi } B +E11_1 FllDﬂ Vio (t) + En_1 F12Dﬁ Voo (t)=0 (14)
p . . .
2Dy, )+ D uy o (6)+ By, By [ DPvy () - DPuy () |- By By, g, (0 - By, By g, (1)

By, 'y 1M, (v, (£)) = By, M Co "M, (£)) = O

Vi1

s
’ }, using multiply both sides, of the equation (14), by E 5 },

Second, to calculate
Vou

{ﬂ [ Dip (6)+ D7y, (8) + By D vy (8) + By LD vy (£) =0 (15
5 DPv,, (t)+ Fy 'Fyy [DPvy, (t)=0
v
Third, in the same way above we will find solution { L2 }, depending on equation (15),
Vas
And the other term of power p can be written according to the following formula:
I:p{} = D°v,;(t)+ D", (t)—+E, "E, Dy, (t) + B, 'F,DPv, =0 j=3,4 (16)
Py D'szyj (t) + F2271F21[D/3v1’j_1 (t) =0

V. .

Finally, we calculate solution [ b ], ,J =3,4,..., using multiply both side of the equation (16), by the
Vo 5

Riemann-Liouville fractional integral operator L P }, through the power p we will get the results of v

that are substituting in u and thus lead to the solution of the system(4), that means (by substituting
solution of equation (14), (15) and (16) into equation (11)). then we obtain the approximate solution
to the descriptor equation (4).

Example (3.1): Consider the descriptor multi fractional integro — differential nonlinear system

E[D’u(t)+D"u(t) |+ FD u(t) = Bg(t)+ CIM(t) t <[0,4], 17

O D0.75 0 DO.S 0
l:uLo( )} _ {0}{ u1,o( )} _ {0}[ ul’o( )} = B}, the exact solution of system (17) is given by

Uy, (0)| [0]]D"Pu,,(0)| [0]]D*%u,,(0)
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(- ? e R L R PR
3(3.5) - _ 2 s
B=O.3,a=0.2,E;( )]_ 3(2%25) . m;((i;} j:?:t%
ol
:{1 0} ﬁtlm +[1 o}rszl(t)} 49
0 1 3(;5) 25 0 1]I1%*M, (t)

D"y, (t)+D*u, (t)| | 3(2.25) 3(2.5)
D%, (t) ) 6 .o
3(3.7)
By equation (6), we can construct homotopy v, = {Vl} such that
2
H
9(vy.p)=| " R
H, (Vz ,p2)

[ DIDO7v, 4 (6) + p}D* vy, (8) + D v, (8) + -+ |- D™y (1)

2 2
+ pi {|:DO'7511170 (t) _ 1_,(2 25) t1.25 _ r(2 5) t1.5:|

- + [pgDO'E)VLo (t) + pD*°vy, (£) + pyD°v 4 (t) + ]} -0

(19)

[ DID%v, 4 (8) + DDV, (1) + D" vy, (1) + -+ |

6
—DO‘“O’uZ’0 (t)+ péDO'?’uz,O (t) +ph {— —F(3.7) t2'7} =0

2
t t t2 t2.25
Now, then, {VLO( )] {0},[‘71’1( )] = ! 3(3.25) , then

Vao (t)

2 2.25 2 2.5 2 2.5 2 2.75
"z ) B {3(3.25)13 +3(3.5)t } Vs (t) ~ {3(3.5)t +3(3.75)t }

Voo (t) Va3 (t)
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2 1 2 1
t _ 2.75 , 1.3 t 3 3.25
V14 (1) ~ {3(3.75)t 3t } Vi (t) - {3(4)t " 3(4.25)t

Vo (t) 0 Vos (t) 0

imate solution to the descriptor equation (17), as follows,

then, , We can get the approx-

D YN0
u(t) _| 1 (t)] _| k=0

11
ZV2,k (t)
k=0 i

2 2 2
tZ t2.25 _ t2.25 t2'5
[ +3(3.25) ] | 3(3.25) +3(3.5) }
2 s 2 am| [ 2 el (20)
t 27 || = t* + =t
= +_3(3.5) +3(3.75) } [3(3.75) 3 ]

I 2 3 1 3.25
" 3(4)t +3(4.25) }

the equation (20) is approximate solution of equation (17).
We can observe that the behavior of the curve in the a (HPM) approach approximates the behavior
of the exact solution in Figure (1).

Exact vs Approximate Solutions using HPM

70

y4 Exact 0
60f |- © =Y Approx.

Yo Exact
50t |- @ _yzApprox.

0 05 1 15 2 25 3 35 4

Figure 1. The figure gives us a comparison between the approximate solution and the exact solution
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Example (3.2): Consider the descriptor multi fractional integro — differential nonlinear system

E|[D’u(t)+D"u(t) |+ FD u(t) = Bg(t) + CIM(t), t € [0,4], (21)
ol L) B??Ii;z 3] ol o

the exact solution of system (21) is given by u }
3(4.1
J (4.1)

1.

33
Such that E:{3 O},F{O O}, B= ( C=|3(3.2) ,6=0.8,7 =0.6,
0 0 3 4 0 43( 85) |
0 33(4.1)

3(4.1) ,
D"y, (t)+D"*u, (t) 533) 335

D%uy (£)+ 5D, (1) || (0.

DO, (1) &2

{DO'Sul(t)}z 5(33)" 3(3.5

Vl} such that

By equation (6), we can construct homotopy v, = {
Vs

B(Vh,p)z

H, (Vupl)}

_H2 (Vz’pz)
[ DY D0, (&) + p} D%y, () + p7 D%, 5 (8) + -+ | = D"y o (8) + P} D%y o (2)
. {[_ F(4.1) 25 T(4.1) tzs}

"1l 13.3) I'(3.5)
+[PID vy, (@) + PID vy, () + Py D v,y () +-++ ]} = 0 23)
[ DD*0,, (1) + PyD"*v,, (8) + P3 D"y, (0) + -+ |

'(1.85) 05, 3r(4.1) tzj}
['(1.45) 4T(3.7)

—DO'4u2’0 )+ péDO"luZ,0 (t)+ Dy {—(

3
+Z[pr°'4vLO @)+ piD™*v,, (1) + p; D**v, , (8) + ]} =0
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v, .
Now, depending on the power of p, we find the solutions of [ b }, j=1,2,..., we get
V2’j

then

Vi (t)

Vas (t) 3 { o, 3(41) tglsj vos(t)| |3 {3(4.1) o, S(41)

Vi (t)
vy (t) 3{:3(4.1)1335 3(4.1)t3.7} Va5 (t) 3[3(4-1)t3,7+3(4-1)t3.9}

| 43(45) 3(aT) 4| 3(47)  3(4.9)

We can get the approximate solution to the descriptor equation (21), as follows

U (t)}
u, (t)

u(t) = [

I'4.3) I'(4.3) I'(4.5)

+{r<4.1> 5, T(41) tﬂ ) {r<4.1) pa, T(41) t?,,g}
I'(4.5) (4.7) I'(4.7) r(4.9)

11 F(41) 3.9 F(41) 4.1
;vl,k(t) J{r(4.9)t 6 }

| 085 . 331 | | 3]0, T(41) 35 (24)
kzzo%’k(t) {t e } {Z[t T3 ﬂ

{ 3 {r(m) s, TAD 45 } _ { 3 [r(4.1> 5, TAD 50 H
4| T(4.3) I'(4.5) 4| T(4.5) r'(4.7)

+F {r(4.1) o7, DD tg,gﬂ
4| T(4.7) I(4.9)

'{tm FRACRY tﬂ ) {r<4.1> s, T tﬂ

£31
- £0.85
The equation (24) is approximate solution of equation (21).
We can observe that the behavior of the curve in the a (HPM) approach approximates the behavior

of the exact solution in Figure 2.
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80 Exact vs Approximate Solutions using HPM

— Exact
Nl e — ¥4 Approx.

¥~ Exact
60 2

- @ =Y Approx.

50 1

=407
30

20r

10+

0 0.5 1 1.5 2 25 3 35 4

Figure 2. The following figure gives us a comparison between the approximate solution and the
exact solution

Example (3.3): Consider the descriptor multi fractional integro - differential nonlinear system

E[D’u(t)+Du(t) ]+ FD u(t) = Bg(t)+ CI"M(t) te[0,4], (25)
[10.85 0.45
Uy (0) _ {0} D™y, , (0) _ {0} D™y, , (0) = [O} the exact solution of system (25) is given by
Wy, (0)| [O] | D**uy,(0)| LOJ|D**u,,(0)] LO
.
u(t) = [t1.55 4 1045
4 0 40 4 0
Such that E:{O O},F:{O 2}’]3:{0 3(1‘45)},
_4 0
Cc=|31.2) ,6=0.85,7=0.7, 3 =0.45, 00 = 0.35,
0  23(2.55)
1 0.15 1 o3 £
[g1 (t)} |3am)" st |, [Ml (t)] S T
g (t) 9 ()] | 3175)"
4 0 D0'85u1 (t) ]:)0.7ul (t) 4 0 DO 45ul (t)
{o 0} D%y, (t)| | D" u, (t) ’ {o 2]| D**u, (t)
4 (26)
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(W |0
u(O) =u, = {uw} = {O} then,

1 0.15 1 0.3 1 0.55
0.85 0.7 0.45 3115t +313t +3155
[D' w, (£)+ D"y (£)+ D", (t)]_| S(1.15) (1.3) (1.55)
0.45 2. ’
D™*u, (t) 3(1.45)_'_3( 55)1;1‘1
3(2.1)
we can get
1 (015 1 0.3 1 £055 _ D07y (t)—DO'45u (t)
{Dossul (t)} 3(1.15) 31.3) 3(1.55) ' '
0.45 - 2.55
D, (t) 5(1.45) + (2:55) .,
3(2.1)

v
By equation (6), we can construct homotopy v, = 1} such that
Vo

9(vh,p):_Hl (Vupl)}

_H2 (Vz’pz)

[ DIDO%v, 4 (8) + pID* vy, (6) + pID" v, 5 () + -+ |~ D, o (1) + piD P, 4 (8)

+pl _ 1 (015 _ 1 £03 _ 1 055
"I r@a.is) 1.3) [(1.55)

+[D?DO'7V1,0 (t)+ pD*"v, , (£) + py DTV, (t) + - ]

- 010.45 110.45 210.45 (27)
+[ YD v, (0)+ BID v, (6 + DD vy, () +-+- ]| = 0
[ PID*v, (1) + D" v, (t) + D Py, (8) + -+
DO, (t) + pLD*Hu, o (t) + pl | -1(1.45) = 2P0 | g
i ’ ’ 2.1) |
V. .
Now, depending on the power of p, we find the solutions of M:l ,j=1,2,...
pi) D0'85V170 (t) _ Do.85ul’0 (t) -0 . (t) . Vaji
1,0
i s L (t)] ZM
p(z) ])0.45\7270 (t) . D0'45u2,0 (t) -0 2,0
1 1
t tl + t1.15 + t1.4
then, [V“( )]: 3(2.15) 3(2.4)
Vai (t) 045 4 {1.55
Vie (t) _ 1 (15 1 (130 2 (155 1 g4 4 1 18 , then
= 3(2.15) 3(2.30) 3(2.55) 3(2.4) 3(2.8)

Voo (t) 0
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_ Lo, 1 g, B t1.70] |
Vi (t) 3(2.30) 3(2.45) 3(2.70)
- 2 1.55 3 1.95 1 1.80 1 2.2
t £+ ———t
Va3 (t) +[3(2.55) T3295)  3(28)  3(32) ]
L 0 .
I 1 1.45 1 1.60 4 1.85 |
- t t
{{ 3(2.45) 3(2.6) ’ 3(2.85) }
Vi (t) 8 a0, 6 o1, 3 s
=| | 3(2.70) 3(3.1) 3(2.95) ’
vaa () 4 w1 a1 s
+ =7 |
3(3.35) 3(3.2) 3(3.6)
L 0 -
I 1 1.6 1 1.75 5 2 4 1.85 |
t t t
L(z.e) Ta27s) T2 T 3(2.85) }
Vi (t) 10 bas, 6 21, 10 5
= 3(3.25) 3(3.1) 3(3.5) ;
Ves (t) 4 2.35 5 £275 4 1 £26 4 lta
3(3.35) 3(3.75) 3(3.6) 6
L 0 -
12 Exact vs Approximate Solutions using HPM
¥4 Exact
obl- e =Y Approx. _J
Yo Exact
- & _yzﬂpprox.
8r u (%)

Figure 3. The following figure gives us a comparison between the approximate solution and the

exact solution
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We can get the approximate solution to the descriptor equation (25), as follows,

ivl’k (3)
u(t) _ |:u1 (t):| _ k=0

LL2 (t) 11

D 0, (0)
k=0

[t1+ 1L s, 1 tu}{ Lo, 1m0, 2 s, 1 g, 1 tm}

r(2.15) r(2.4) r(2.15) r(2.30) r(2.55) r(2.4) " r(2.8)

+ ]- t1.30 + 1 t1‘45 + 3 t1.70
7(2.30) r(2.45) r(2.70)

N 2 £155 3 £195 1 f180 1 §2:2
r(2.55) r(2.95) r(2.8) r(3.2)

) { 1 e, 1 e, 4 thﬂ
r(2.45) r(2.6) r(2.70) (28)

3 t1.70 + 6 t2.1 + 3 t1‘95
r(2.70) r(3.1) r(2.95)

+ 4 t2‘35 + 1 t2.2 + 1 t2‘6
r(3.35) r(3.2) r(3.6)
1 16 4 1 {175 +§t2 + 4 £1.85
r(2.6) r(2.75) 2 r(2.85)
+ 10 t2‘25 + 6 t2‘1 + 10 t2‘5
r(3.25) r(3.1) r(3.5)

n 4 §235 5 275 1 t2.6+lt3 4
r(3.35) r(3.75) 7(3.6) 6

t0.45

= (29)
{045 | 4155

the equation (29) is approximate solution of equation (25).
We can observe that the behavior of the curve in the a (HPM) approach approximates the behavior
of the exact solution in Figure (3).

4. Conclusion

In this work we were able to find an approximate solution using the (HPM). We got very accurate
approximate solutions compared to the exact solution, whose results were largely identical. In addi-
tion, the drawing gave us a clear view of the convergent between the approximate solution and the
exact solution. We can notice the diversity in examples, in the first example, we found that the system
contains two fractional derivatives for the first component, ul, and one fractional derivative for the
second component, u2. In the second example, we found that the system contains two fractional deriv-
atives for the first component, ul, and two fractional derivatives for the second component, u2 and ul.
In the third example, we found that the system contains three fractional derivatives for the first com-
ponent, ul, and one fractional derivative for the second component, u2. Using the iterative method,
HPM, we arrived at an approximate solution.



Abed AM et al, Results in Nonlinear Anal. 8 (2025), 81-96. 96

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]

(21]

Biazar. J, Ghazvini. H: Convergence of the homotopy perturbation method for partial differential equations. Nonlinear
Anal., Real World Appl. 10, 2633-2640 (2009).

Duan G.R.," Analysis and Design of Descriptor Linear Systems", Springer Science+Business Media, LL.C, New York,
2010.

Guo. S, Mei, L, Fang, Y, Qiu, Z, Compacton and solitary pattern solutions for nonlinear dispersive KdV-type equations
involving Jumarie’s fractional derivative, Physics Letters. A 376 (2012), pp. 158—-164.

Guo .S, Mei. L, Li .Y, Sun .Y, The improved fractional sub-equation method and its applications to the space-time
fractional differential equations in fluid mechanics, Physics Letters. A 376 (2012), pp. 407-411.

He .J. H, “Homotopy Perturbation Technique,” Computer Methods in Applied Mechanics and Engineering, Vol. 178,
No. 3-4, 1999, pp. 257-262. doi:10.1016/S0045-7825(99)00018-3

He .J. H: A coupling method of homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-
Linear Mech. 35, 37-43 (2000).

He .J. H, “New interpretation of homotopy perturbation method,” International Journal of Modern Physics B, Vol. 20,
No. 18, 2006, pp. 2561-2568. doi:10.1142/S0217979206034819

Huang .F, F. Liu, The time fractional diffusion and fractional advection-dispersion equation, The Australian & New
Zealand Industrial and Applied Mathematics Journal 46 (2005), pp. 317-330.

Junfeng, L: An analytical approach to the sine-Gordon equation using the modified homotopy perturbation method.
Comput. Math. Appl. 58, 2313-2319 (2009).

Liu .Y, Variational homotopy perturbation method for solving fractional initial boundary value problems, Abstract and
Applied Analysis 2012 (2012), Art. ID 727031, 10 pp.

Mohammed O. H. and Khlaif. A. "Homotopy Analysis Method for Solving Delay Differential Equations of Fractional
Orde" I. Al-Nahrain University, College of Science, Department of Mathematics and Computer Applications, Baghdad,
Iraq Mathematical Theory and Modeli. www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.4, No.14,
2014.

Molliq .Y. R, Noorani. M. S, . Hashim .I, Variational iteration method for fractional heat- and wave-like equations,
Nonlinear Analysis. Real World Applications 10 (2009), pp. 1854-1869.

Oldham K. B. and panir J., "The Fractional Calculus", Academic Press, New York and London, 1974.

Podluny I., "Fractional differential Equations", Academic press, New York, 1999.

Takaci .D, Takaci A., Strboja . M., On the character of operational solutions of the time fractional diffusion equation,
Nonlinear Analysis. Theory, Methods & Applications 72 (2010), pp. 2367-2374.

Xue .C, Nie .J, Tan .W, An exact solution of start-up flow for the fractional generalized Burgers’ fluid in a porous half-
space, Nonlinear Analysis. Theory, Methods & Applications 69 (2008), pp. 2086—2094.

Yang S., Xiao A. and Su H. "Convergence of the Variational Iteration Method for Solving Multi Order Fractional
Differential Equations", Computers and mathematics with applications, Vol. 60, pp. 2871-2879, 2010.

Dawood, L., Sharif, A., & Hamoud, A. (2020). Solving higher-order integro differential equations by VIM and
MHPM. International Journal of Applied Mathematics, 33(2), 253.

Yang S., Xiao A. and Su H. "Convergence of the Variational Iteration Method for Solving Multi Order Fractional
Differential Equations", Computers and mathematics with applications, Vol. 60, pp.2871-2879, 2010.

Eshkuvatov, Z. (2022). New development of homotopy analysis method for non-linear integro-differential equations
with initial value problems. Math. Model. Comput., 9(4), 842-859.

Naik, P. A., Ghoreishi, M., & JIAN, Z. (2022). Approximate solution of a nonlinear fractional-order HIV model using
homotopy analysis method. International Journal of Numerical Analysis & Modeling, 19(1).

Olayiwola, M. O., & Adedokun, K. A. (2023). A novel tuberculosis model incorporating a Caputo fractional derivative
and treatment effect via the homotopy perturbation method. Bulletin of the National Research Centre, 47(1), 121.
Polat, S. N. T., & Dincel, A. T. (2023). Solution method for systems of nonlinear fractional differential equations using
third kind Chebyshev wavelets. Axioms, 12(6), 546.

Kaewta, S., Juntharee, P., & Sirisubtawee, S. (2023). Applications of the Laplace variational iteration and Laplace
homotopy perturbation methods for solving fractional integro-differential equations. Thai Journal of Mathematics,
91-118.

Yang, H., Si, X., & Ivanov, 1. G. (2024). Constrained state regulation problem of descriptor fractional-order linear con-
tinuous-time systems. Fractal and Fractional, 8(5), 255.

Moumen, A., Mennouni, A., & Bouye, M. (2024). Contributions to the numerical solutions of a Caputo fractional differ-
ential and integro-differential system. Fractal and Fractional, 8(4), 201.

Albaidani, M. M. (2025). Comparative Study of the Nonlinear Fractional Generalized Burger-Fisher Equations Using
the Homotopy Perturbation Transform Method and New Iterative Transform Method. Fractal and Fractional, 9(6),
390.

Yisa, B. M., Amosa, B. S., & Aselebe, L. O. (2025). Homotopy Analysis Integral Transform Method for the Solutions of
Fractional Order Integro-differential Equations. Journal of Fractional Calculus and Applications, 16(2), 1-21.

Abed, A. M., Jafari, H., & Mechee, M. S. (2023). A comparative study to solve fractional initial value problems in dis-
crete domain. Open Engineering, 13(1), 20220480.



