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Abstract

Complex decision-making problems are uncertain, contradictory and partially ignorant conditions
that surpass the representational limits of traditional fuzzy, intuitionistic and neutrosophic soft set
models. To overcome these limitations, this paper introduces the penta partitioned intuitionistic
neutrosophic soft set (PPINSS), a five component extension that distinctly represents truth, inde-
terminacy, contradiction, falsity and ignorance. Unlike previous models, PPINSS incorporates an
intuitionistic dependency between truth and falsity through the balance relation 7 =1-17— ¢, ensur-
ing a coherent and bounded characterization of uncertainty. Fundamental set-theoretic operations
such as complement, subset and equality are formally defined and their algebraic properties are
rigorously established. Moreover, a comprehensive family of operators—including necessity (®) and
possibility (®) transformations, aggregation operators (®, ©) and parametric mappings 4,,.2,,) 18
introduced to model dynamic uncertainty and interdependent reasoning. These operators are shown
to satisfy algebraic consistency, duality and closure within the PPINSS domain. By integrating the
intuitionistic interdependence of truth and falsity with a fifth component representing latent igno-
rance, PPINSS offers a unified, logically coherent and semantically rich framework for modeling com-
plex real-world uncertainties. It serves as an effective analytical foundation for multi-criteria decision
analysis, distributed intelligence and cognitive reasoning systems.
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1. Introduction

Uncertainty, vagueness and indeterminacy are essential characteristics of real-world systems.
Traditional mathematical models such as fuzzy sets [22] and intuitionistic fuzzy sets [2] have effec-
tively modelled partial truth and hesitation but remain limited when information exhibits contradic-
tion, incompleteness, or ignorance. To overcome these limitations, more expressive frameworks such
as neutrosophic sets [20] and their extensions have emerged providing independent quantification of
truth, falsity and indeterminacy.

Soft set theory introduced by Molodtsov [15] offers a parameterized approach to uncertainty model-
ling without relying on complex membership functions. When integrated with neutrosophic logic [20]
it yields the neutrosophic soft set (NSS) [13] a versatile framework widely applied in decision-making,
data analysis and information fusion. Several advanced versions including possibility neutrosophic
soft sets [10], effective neutrosophic soft sets [11], neutrosophic soft open sets [18] and block matrix-
based neutrosophic soft sets [8] have extended its scope and applicability.

In recent years, partitioned neutrosophic models have gained prominence for their enhanced
expressivity. The quadri-partitioned neutrosophic soft set [12] introduced an explicit representation
of contradiction alongside truth, indeterminacyand falsity. However, these four components do not
capture the notion of ignorance a form of latent knowledge inherent in real-world systems such as
distributed sensing, medical diagnostics and intelligent decision environments. To address this lim-
itation, penta-partitioned neutrosophic sets were proposed [7, 14, 16, 17], providing a fifth dimension
to represent unawareness.

Building upon this foundation, the present work introduces the Penta-Partitioned Intuitionistic
Neutrosophic Soft Set (PPINSS), which generalizes existing soft and neutrosophic frameworks while
preserving the dependency between truth and falsity. Unlike previous models, the PPINSS integrates
Intuitionistic principles [5, 6] with penta-partitioned neutrosophic logic, ensuring a balanced repre-
sentation of dependent truth—falsity values and independent indeterminacy, contradiction and con-
textual ignorance measures.

The development of algebraic operators has played a vital role in enhancing the analytical depth
of soft computing models. Recent contributions such as aggregation and similarity based extensions
[1, 9, 19] lattice and ordering structures [21] and multi-polar or interval-valued systems [3, 23], have
strengthened the theoretical foundation for multi-criteria decision-making (MCDM). These studies
collectively highlight the growing demand for flexible, algebraically consistent models capable of rep-
resenting layered uncertainty.

In this context, the proposed PPINSS framework unifies the essential features of these models by:

1. Introducing a five-dimensional intuitionistic neutrosophic soft structure that captures truth, fal-
sity, indeterminacy, contradiction and contextual ignorance. The truth and falsity components
are dependent on each other, while the other components are independent of each other;

2. Defining comprehensive operator families including necessity (©®), possibility (®), additive (®),
difference (©) and parametric transformations (4,,,@,,) and establishing their algebraic
properties;

3. Demonstrating that traditional neutrosophic and quadri-partitioned systems arise as special
cases within the PPINSS framework;

Thus, PPINSS represents a significant theoretical advancement in neutrosophic soft set theory
bridging intuitionistic and penta-partitioned reasoning within a unified algebraic framework that
accommodates both dependency and contextual unawareness in uncertainty modeling.

2. Preliminaries

This part describes some of the basic mathematical concepts underlying the envisioned framework,
viz. fuzzy sets, intuitionistic fuzzy sets, neutrosophic sets and quadri-partitioned neutrosophic sets.
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Let U denote the universal set of discourse consisting of all possible objects under consideration and
A a set of parameters describing attributes, features, or decision criteria associated with the elements
of U. A neutrosophic structure is characterized by a set of membership functions that express multiple
facets of uncertainty such as truth, indeterminacy, contradiction, falsity, and other context-dependent
components. For any x € U, the functions 7T(x), I(x), C(x), F(x), and U(x) represent, respectively, the
degrees of truth, indeterminacy, contradiction, falsity and ignorance. Each function takes values in
[0,1]. These components together enable neutrosophic based models to accommodate both conflicting
and incomplete information, offering a comprehensive representation of uncertainty.

Definition 2.1: [22] A fuzzy set F on U is characterized by a membership function u,:U —[0,1],
which assigns to each element x € U a real value p,(x) representing its grade of belongingness to F.
The fuzzy set is thus represented as F ={(x, . (x)) | x e U}.

Definition 2.2: [2] An intuitionistic fuzzy set (IFS) T on U extends the fuzzy concept by introducing
an explicit representation of non-membership. It is defined as T ={(x, i1, (x),v,(x)) | x € U}, where 1, (x)
and v,(x) represent, respectively, the degrees of membership and non-membership of x in I, subject
to the constraint 0< u, (x)+v,(x)<1, Vxe U. The residual uncertainty, referred to as the hesitation
degree, is quantified by z,(x)=1- u,(x)—v,(x), which captures the extent of indeterminacy in assess-
ing the membership of x.

Definition 2.3: [20] A neutrosophic set N generalizes the intuitionistic fuzzy framework by inde-
pendently quantifying the degrees of truth, indeterminacy and falsity for each element. Represented as
N ={(x,T(x),I,(x),F,(x))|xe U}, where T\ (x),I,(x),F,(x)e[0,1], Vxe U.

Definition 2.4: [4] A quadri-partitioned neutrosophic set (QPNS) Q further enhances the expres-
sive capacity of the neutrosophic framework by introducing an additional component that quanti-
fies contradiction. It is defined as Q={(x,T,(x),1,(x),C,(x),F,(x))|xe U}, where each function
T,(x),1,(x),C,(x),F,(x)e [0,1], VxelU.

Definition 2.5: [4] A penta-partitioned neutrosophic set (PPNS) P extends the quadri-partitioned neu-
trosophic framework. It is represented as P ={(x,T,(x),I,(x),C,(x),F,(x),U,(x))|x € U}, where each
function T,(x),I,(x),C,(x),F,(x),U,(x)e [0,1], Vxe U.

3. Main Results

Definition 3.1: PPINS A on U is defined as A:{(u, 7,(w),1,(w), k,(w), 9, (w),v,(w):ue Z/l}, where
7,(w), 1,(w), x,(uw), ¢,(w) and v,(w) are real-valued functions mapping U into [0,1], representing
respectively the degrees of truth, indeterminacy, contradiction, falsity and unawareness. These com-
ponents satisfy the following conditions: 0<7,(u),1,(w), x,(w),9,(w),v,(w)<1, and 7,(u)+¢,(uw)<1.
The inequality 7,(u) + ¢, (u) <1 captures the intuitionistic dependency between truth and falsity mem-
berships, while 1,(w), x,(u) and v,(u) remain independent uncertainty descriptors.

Example 3.2: Consider a weather forecasting system equipped with three sensors S,, S, and S,, each
providing evidence about the event “Rain” for the following day.

(1) S, predicts a high chance of rain (0.9),
(2) S, predicts a low chance of rain (0.1) and
(3) S, fails to transmit data (sensor offline).

Each sensor’s observation is represented by a PPINS

Ask (Rain) = (Tsk ’lSk 7KSk 7¢Sk ’USk )7
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as follows:
A, (Rain) =(0.9,0.1,0.0,0.1,0.0),
A, (Rain) =(0.1,0.1,0.0,0.8,0.0),
A, (Rain) = (0.0, 0.0,0.0,0.0,1.0).

Definition 3.3: A pair (0, A) is called a penta-partitioned intuitionistic neutrosophic soft set (PPINSS)
over U if §: A— P°, where P5 denotes the collection of all PPINS. For each parameter ec A, the image
o(e) is a PPINS over U, defined as d(e) :{(u,ré(e)(u),l[;(e)(u),Kﬁ(e)(u),¢5(8)(u),v§(e)(u)) ‘ue U}. The truth
and falsity components are considered dependent. That is, for eachue U and e€ A, 7, (u) + @y, () <1,
and each component satisfies

0 < 7,5, (W)L, (W), K5, (1) By, (1), Vs, (1) S 1.

Example 3.4: Let U ={u,,u,,u,}and A={ee,}. A PPINSS (6,A) is defined by the parameter-wise
mappings d(e,) and O(e,) given below. Each entry is a tuple (z,1,x,$,0) with values in [0,1] satisfying
the dependency condition 7+ ¢ <1.

Parameter e,

U Ty (w) Lsiep) (w) K&(el)(u) ¢5(e1) (w) User) (w)
u, 0.80 0.10 0.05 0.15 0.10
u, 0.40 0.20 0.10 0.50 0.10
u 0.10 0.05 0.00 0.10 0.85

w

Equivalently,
S(e,) = {(u,,(0.80,0.10,0.05,0.15,0.10)),
(1,,(0.40,0.20,0.10,0.50,0.10)),
(u,,(0.10,0.05,0.00,0.10,0.85)) }

Parameter e,

U Ty, (w) Ls(ey) (w) Ks(ep) (w) ¢§(e2 ) (w) Us(ey) (w)
u, 0.30 0.30 0.10 0.60 0.10
u, 0.60 0.10 0.05 0.40 0.10
u, 0.50 0.20 0.20 0.50 0.10

SO
S(e,) = {(u,,(0.30,0.30,0.10,0.60,0.10)),

(1,,(0.60,0.10,0.05,0.40,0.10)),
(u,,(0.50,0.20,0.20,0.50,0.10)) }.

Definition 3.5: Let (6,,4) and (J,,4,) be two PPINSS defined over a common universe U. Then the
logical operations “AND” and “OR” between them are defined as follows:

(i) The AND operation between (6,,A,) and (J,,A,) is denoted by

(6,,4)) A (8,,4,)=(6,,4,XA,),
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where, for every (e,,e,)e AxA,,
0 (e ,e,)=0,(e)N0,(e,).
The corresponding PPINS of each element ue U under this operation is given by
8.(e,.¢,)() = (min(z, , (W).7, ., (@), min(, @, (),
min(K (1)K, (0), Max(@y ., (0,8, @),
max(vy,,, (1), (1))).
(i1) The OR operation between (4,,4,) and (J,,4,) is denoted by
(6,,4) Vv (8,,4,)=(8,,4,xA,),
where, for every (e,,e,)e A,xA,,
o,(e ,e,)=0(e)Ud,(e,).
The corresponding PPINS of each element u € U is defined as

o,(e,e,)(u)= <max(r§l(el) (W), 75 (,,, W), max(y (W), 15, , (W),
max(x, . (), &, ., (W), min(g, ., (). .., W),

min(%1 ) (u)’vfa(ez) (u))> )

Example 3.6: Let U ={u,,u,}. Consider two PPINSS (9,,{e}) and (0,,{f}) defined over U as

5. (e) = {(u,,(0.80,0.10,0.00,0.10,0.05)), {x,,(0.40,0.20,0.10,0.30,0.10)) }
8,(f) = {(u,.,(0.60,0.05,0.20,0.20,0.10)), (x,,(0.20,0.30,0.00,0.50,0.05)) }.

Applying the definitions of A and v:

AND: (6,,1e}) A (6,,4f}) = (6, e} x{f})
S (e,f)(w,) =(0.60,0.05,0.00,0.20,0.10),
S (e,f)(u,) = (0.20,0.20,0.00,0.50,0.10).

OR: (6,,{e}) v (0,,{f}) =(8,,{e} x{f})
S (e,f)(u,) =(0.80,0.10,0.20,0.10,0.05),
S (e,f)(u,) = (0.40,0.30,0.10,0.30,0.05).

Definition 3.7: Let (6,,4) and (J,,A,) be two PPINSS over a common universe U.
(1) The union of (6,,4,) and (4,,4,) is denoted by
(6,,4) U (6,,4,)=(6,,4,),

where A=A U A, and for every parameter Ae A,
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5.(A), if e A\ A,
62(/1)’ lf/le A2\A1’

6,(4) = {<u’ max (7, ), 7y, ) @) max (1 o, W), 15,,, (1))

max(lcglw(u), ng)(l)(u)), min(%u)(u),%w(u)),

min(vél(ﬂ)(u),vazu)(u)» ‘ue L{}, ifAe AN A,

(11) The intersection of (6,,4,) and (0,,4,) is denoted by
(6,,A4,) M (8,,4,)=(6,,4,),

where A=A, N A, and for every parameter Ae A _,

6,(4), if e A\ 4,,
,(A), if 1e A,\ 4,
8, (A) = 1w, min(z, ) (W),75 ;) (W), min(zy, ;) (W15, ;) (W),

min(ky ;, (W),K;, ;) (W), max(dy, ;, (W)@, ,, (W),

max(vgl(l)(u),vazw(u)» rue U}, if le AN A,

Definition 3.8: Let (J,A) be a penta-partitioned intuitionistic neutrosophic soft set (PPINSS) over a
universe U, where

S(A) ={(u, (T3, (W), 15, (W), K5, (W), G5y (W), V5, W) e U}, Ae A
Then, the complement of (0, A), denoted by (0, A), is defined as
(6,4) =(6°,4),
where for each parameter Ae A and for allue U,
S AW) = (B0 (W) 1= 1505 (W), 1= Ky ) (W), Ty (), 1= Dy, ().
Example 3.9: Let U ={u,,u,,u,} and consider a PPINSS (J,{e}) defined as

5(e) = {(u,,(0.70,0.20,0.10,0.10,0.05)),
(1,,(0.30,0.40,0.20,0.50,0.10)),
(1,,(0.10,0.10,0.10,0.20,0.50))}.

The complement (6,{e}) ¢ becomes

5°(e) = {(u,,(0.10,0.80,0.90,0.70,0.95)),
(1,,(0.50,0.60,0.80,0.30,0.90)),
(1,,(0.20,0.90,0.90,0.10,0.50))}.

Theorem 3.10: Let (5,,4,) and (9,,4,) be two PPINSS over a common universe U. Then,
@) [(6,,4) M (8,,A4,)] =(6,,4,)° UW(S,,A,),
@) [(8,,4) U (S,,4,)] =(8,,4,) M (S,,4,)".
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Proof. We prove (1); the second follows by duality.
Let

(8,,A4,) M (J,,A4,)=(5,,A,), A=A NA,.
For each Ae A andue U,
o, (A)(w) = <min(fl,z'2), min(z,z,), min(x;, x,), max(g,,d,), max(vl,vz)>.

Applying the updated complement rule

(T’la K7¢7v)c :(¢71_l’]—_’(71,1_0)7

we obtain
o (D)(u) = (max(¢1,¢2), max(1-¢,1-1,), max(1-x,,1-k,),
min(z,,7,), min(l-v,,1 - 1)2)>.
Next, consider the union of the complements:
(6,4) U6, A) =(0,,4,), A, =404,
For Ae A nA, andueld,
0,(A)(u) = (max(@,@), max(l-1¢,1-1,), max(1-x,,1-x,),
min(z,,7,), min(1-v,,1 -, )>.
Comparing the two expressions component-wise, we find
0 (A)(u) =0,(A)(w), YueU,le A NA,.

Hence,

[(8,4) M (3, A4)]=(5,A4) U5, A4)".

By the duality of min and max, the second law follows directly:

[(8,4) U (3,,4)]=(5,A4) M5, A)".

O
Definition 3.11: Let A, and A, be subsets of a common parameter set A.

The pair (4,,4,) is said to be a penta-partitioned intuitionistic neutrosophic soft subset (PPINSS-
subset) of (d,,4,), denoted by (J,,4) € (5,,4,), if and only if the following two conditions hold:

i A cA;
(i) For every Ae A and eachue U,
Ty (W) £ Ty, W), 15, ) (W) 215, (),
Kgl(/l)(u) 2 K@(g)(u)’(bgl(g)(u) 2 ¢52(4)(u), U,sl(g)(u) 2 1)52(,1)(u)-

Furthermore, both soft sets respect the intuitionistic dependency constraint

T@(l)(u)+¢(5i(l)(u)£1, fori=1,2,
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In this case, (9,,4,) is called the penta-partitioned intuitionistic neutrosophic soft superset (PPINSS-
superset) of (J,,4,), denoted by

(6,,4) 2 (6, 4).

Definition 3.12: Let (6,,4,) and (J,,4,) be two Penta-Partitioned Intuitionistic Neutrosophic Soft
Sets over the same universe U. They are said to be equal, written as (8,,4) = (J,,4,), if and only if

(6,,4) €(9,,4,) and (6,,4,) €(6,,A).
4. Necessity (@) and Possibility (®) Operators on PPINSS

We introduce the necessity and possibility operators on PPINSS and describe their structural trans-
formations. These operators provide dual perspectives of certainty and potentiality in neutrosophic
information modelling.

Definition 4.1: Let (5, A) be a PPINSS over a universe U, where

o(A) :{(u,(f‘su)(u),lw)(u),KW)(u),(,l)ﬁ(l)(u),vw)(u))) ‘u€ L{}, Ae A, and satisfies the intuitionistic con-
straint Ty, (w) + @, (w) <1.

(i) The necessity operator, denoted by (©), is defined as ©(5,A)=(0d,,A), where for each Ae A and
uel,

8, (A)(W) = (T50 (W),15 (W), K1y (1), 1 = Ty (1), 05, (1))

(it) The possibility operator, denoted by (®), is defined as ®(5,A) =(6,,A), where for each A€ A and
uel,

5@ (/’L)(u) = <1 - ¢5(1) (u)ylg(;,) (u)7 Kg(l) (u)7 ¢5(1) (u)7 vg(i) (LL)> .

Theorem 4.2: Let (5,,4,) and (6,,A,) be two PPINSS over a universe U.

Then:
@) ©[(6,4)U(5,,4,)]=0(6,4)Ue(S,,A4,);
(i1) ©[(6,,4) M (5,,4,)]|=@(8,,4) e (d,,A4,);
(ii)) o[ @(3,, 4)]= ©(3,, ).
Proof: Let Ae A U A, and ue U be arbitrary. For i = 1, 2, define the PPINSS:
S.(DW) =(7,,1,K,,9,,0,).
The necessity operator (©®) is defined component-wise as:
@(TJ’ K7¢7U) = (Tyl? K71 - T’v)'
The union U and intersection m of two PPINSS are defined pointwise for the pentagonal tuples as
follows:
(6, U 6,)(A)(w) = (max(z,,7,), max(y,1,), max(k;, &,), min(g,,¢,), min(v,,v,)),
(6, M 6,)(A)(w) = (min(z,,7,), min(z,,1,), min(x;, x,), max(4,, ¢,), max(v,,v,)).

(i) Let 6, =6, U 0,. By definition:
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8, (A)(w) = (max(z,,7,), max(y,1,), max(k;, k,), min(4,,¢,), min(v,,v,)).
Applying the necessity operator:
©6, (D)(w) = (max(r,,7,), max(t,,1,), max(k;, k,),1 - max(z,,7,), min(v,,v,)).
Now, compute the right-hand side. First, for i = 1, 2:
©0,(A)(u) =(1,,1,%,1-7,,0,).
Their union is:
(@6, U ®6, ) (A)(w) = (max(r,,7,), max(,,1,), max(k;, ,), min(1 - 7,,1 - 7,), min(v,,v,)).
Since min(1 -7,,1-7,) =1-max(z,,7,), the two expressions are equal. This proves (i).
(ii) Let o, =96, mo,. By definition:
0, (A)(u)= (min(z‘1 ,T,), min(z,,7,), min(x; , k,), max(4,,d,), max(vl,UZ)).
Applying the necessity operator:
©6, (A)(w)=(min(z,,7,), min(y ,,), min(x; , k,), 1 - min(z,,7,), max(v,,v,)).
Now, compute the intersection of the necessities:
(@6, M ®6, ) (A)(w) = (min(z,,7,), min(y,z,), min(x;, &,), max(1 - 7,,1 - 7,), max(v,,v,)).

Since min(l - 7,,1-7,) =1-max(7,,7,), the two expressions are equal. This proves (ii).

(iii) Idempotence follows directly from the definition. For any (o,,4,):
@(519/11)(/1)(1’4) = (717117 ’(171 - Tpvl)-

Applying (®) again:
©[©(é‘1,/11)j|(/1)(u) = @(Tl 711 ) Kl 7]- - T1 701)
= (Tl’ll’K'l’l_Tl’Ul)
=@(6;, 4) (D) (w).
This proves (ii1). Ol
Theorem 4.3: Let (6,,A) and (J,,A,) be two PPINSS over a universe U.
Then:
i) ®[(6,,4) U (5,,4,)]=®(5,,4) U &(d,,A,);
(i) ®[(8,,4)M(8,,4,)]=&(J,,4) N &(J,, A4,);
(iii) @[ ®(,, 4) |= (6, 4,).

Proof. We prove (1) in detail; (i1) and (iii) follow similarly.

Let (6,,4) U (6,,4,) =(d,,4,) with A, =4 U A,.
For any A€ A, and ue U, define:
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o) =(z,1,x,0,v,), fori=12.
By the definition of union for PPNSS:
8, (A)(w) = (max(z,,7,), max(y,1,), max(k;, k,), min(4,, ¢,), min(v,,v,)).
The possibility operator (®) is defined as:
®(7,1,k,0,0) =1 - 9,1,K,9,0).

Applying (®) to the union:
®6, () (w) = ®(max(r,,7,), max(y,1,), max(k;, k,), min(g,,¢,), min(v,,,))

= (1 —min(g,,¢,), max(i,1,), max(x;, x,), min(4,,4,), min(z)l,vz)).
Now compute the right-hand side. First, apply (®) individually:
®0(AD)w)=1-9¢,1,%,4,0,), fori=12.
Their union is:
(®51 U®9, ) D (w) = (max(l -¢,,1-¢,), max(z,,1,), max(k,, k,), min(¢,,4,), min(vl,vz)).
Since max(1-¢,1-¢,)=1-min(g,q,), the two expressions are equal:
®F, (D) () = (®6, U @6, ) (1)(w).
This holds for all Ae A, and ue U, proving (1).
(ii) For the intersection case, let (6,,4) M (J,,4,) =(5,,4,) . Then:
8. (A)(w) = (min(z,,7,), min(z,,1,), min(x;, &, ), max(4, ,4,), max(v,,,)).
Applying (®):
®6, (D) (w) = (1 - max(4,,4,), min(y,,1,), min(x;, k,), max(¢,,¢,), max(v,,v,)).
Now compute the intersection of possibilities:
(®51 M ®J, ) D(w) = (min(l - ¢,,1-¢,), min(z,,z,), min(x,, , ), max(g,,9,), max(vl,vz)).
Since max(1-¢,,1-¢,) =1-min(d,,9,), the expressions are equal, proving (ii).

(iii) For idempotence, let d(1)(u) = (7,1, x,0,0). Then:
@5(&)(”) = (]— - ¢’la K7¢7U)'

Applying (®) again:
®(®§(/1)(u)) =®(1-9,1,k,0,0)
= (1 - ¢,l,K’,¢,’U)

=®0(A)(w).
This proves (ii1). l
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Theorem 4.4: Let (0,A) be a PPNSS. Then

(1) ®°©(5,4)=0(5,4);
(1) @°® (0,4) =®(J,A).
Proof. Let Ae A and ue U be arbitrary and let

o(A)(w) =(r,1,k,0,0).
(i) First, compute the necessity operator applied to J:
@0(A)(u) =(r,1,x,1-1,0).
Now apply the possibility operator to this result:
®(©5()(w)) = &(r,1,k,1-17,0)
=(1-0-17),1,x1-7,0)

=(r,,,x,1—-17,0)
=©0(1)(u).

Since this holds for all Ae A and ue U, we have:
®°©(0,4) =0(0,A).
(ii) Now compute the possibility operator applied to o:
®0(A)(w) =1 -9¢,1,k,0,0).

Apply the necessity operator to this result:
©(®5(D) (W) =61 -¢,1,k,¢,0)
=(1-¢,1,5,1-(1-9),0)
=(1-¢,1,x,0,0)
=®5(A)(w).
Since this holds for all Ae A and ue U, we have:

©°® (0,4) =®(J, A).
This completes the proof of both identities. O

Theorem 4.5: Let (6,,4,) and (J,,A,) be two PPINSS over a common universe &. Then the following
identities hold for all parameters and elements of U/:

() ©[(J,, A4) A (S,, 4,) ]= ©(8,, A4) A (S, A,);
(i) ©[(8,,4) v (8,,4) ]= @(8,, 4) v ©(J,, 4,);
(iid) ®[ (8, 4) A (8, 4,) |= ®(S,, A) A ®(S,, 4,);
) ®[ (8, 4) v (J,,4,) |= ®(5,, 4) v &(6,, A,).

Proof. All statements hold componentwise. We demonstrate (i) and (ii1); the others follow analogously
by min—max duality.
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Let 4, € A, A, € A, and ue U . Denote
8w = (1,4,5.0,0), i=1.2.
(i) Necessity under the A-operation. By definition,
8.(&, A) (@) = (min(z,,7,), min(s,1,), min(i;, &,), max(g,,4,), min(v,,v,)).
Applying the necessity operator:
©0d (4,4,)(u) = (min(z’1 ,T,), min(z,,2,), min(x;, k), 1 — min(z,,7,), min(vl,v2)).
Individually,
©0,(A)(w) =(1,1,k,1-17,,0,),

whose A-operation gives

(©6, A®6,)(4,4,)(w) = (min(z,,7,), min(y,,1,), min(x; , &,), max(l - 7,1 - 7,), min(v,,v,)).

Since max(l1-17,,1-7,)=1-min(z,,7,), the two results coincide, proving (i).
(iii) Possibility under the A-operation. The A-combination gives
o (A, 4)(u) = (min(fl,TZ), min(y,,1,), min(x;, k,), max(4,,¢,), min(v,,v,)).
Applying the possibility operator:
®0 (4,4,) () = (1 —max(d,,¢,), min(z,1,), min(x;, x,), max(g,,4,), min(vl,UZ)).
Individually,
®6,(4) W) = (1= 8.1,,K,,8,,0,),

and their A gives

(®0, A®J,)(4,4,)(u) = (min(l - ¢,,1-¢,), min(z,,1,), min(x;, x, ), max(g,,9,), min(vl,vz)).

Using min(1-¢,,1-¢,) =1-max(4,,q,), the two results coincide, proving (ii1). (ii) and (iv) follow anal-

ogously for the v-operation using the dual equalities

max(l1-7,,1-7,)=1-min(7,,7,), min(l-¢,1-¢,) =1-max(4,,4,)

Hence, all identities hold componentwise under the intuitionistic constraint 7+ ¢ <1 for every ue U

and Ae A.

Definition 4.6: Let (J,,4,) and (9,,A,) be two PPINSS defined over a common universe U. Define

A=A =A U4,
(i) The @ operator is defined as
(51’/11) ® (62’/12) = (5@’/1@)7

where, for every Ae A, and ue U,

O
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8, (Mw), if e A\ A,
8, (W) =1 8,(D)(w), if 1e A\ 4,

where (7,,1,,k,,0,,0,) = 0,(A)(w) for i=1,2.
(it) The © operator is defined as
(6,,4)©(6,,4,)=(6.,4.)

where, for every Ae A, and ue U,

5, (Mw), if e A\ 4,
5. (Aw) =1 8,(Dw), if de A\ 4,
(B e, o3, 22 20), i de 4 N,

Proposition 4.7: Let (6,,A,) and (6,,A,) be non-empty PPINSS over the universe U. Then
(i) (6,4)®(5,,4)=(5,,4)® (5, A);
@) [(8,,4) @5, 4) | =(6,,4)®(5,, A4,).
Proof. We prove each item componentwise.
(i) For Ae A " A, and ue U. Write
5w =(7.1.5.6.0), =12
By definition of @ (componentwise arithmetic mean) we have

(6,0 6,) (D)= (55, 5 52, 258 22 = (50 50 50 228, 222) = (5,0 (D(w)

(1) For e A N A, and ue U ; use the same notation. First compute complements (using the PPINSS
complement rule with 1—v):

dc(ﬂ)(u):(le_li’l_m,fi,l_vi), i:1,2-

Apply @ to these complements:

2 ’ 2 >’ 2 0 2

(50 @50)(1)(1/6) (¢1+¢2 (1-9)+(1-15) (1-Ky)+(1-Ky) T+Ty (1-v)+(1- uz))
Now take complement of this result (apply complement componentwise):

((5c @55)(/1)00) (4:1+¢z 1— (1- 11)+(1712)’1 (A-x)+(1-Kk3) H+dy 1— (1- 1)1)+(1—uz))'

2 2 T3 2

But elementary algebra yields
(1—zl)+(1—12)=zl+z2 1_(1—1c1)+(1—/c2)_1c1+1c2

1- , -
2 2 2 2

y

and
1-v)+A-v,) v+,
2 2

1-
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Hence the complemented tuple simplifies to

T1+Ty Q+lpg K t+Ky @t+dy Uty
2 2 2 00 2 2 > 2 ’

which is exactly (51 ® 4, )(ﬂ)(u). Therefore,

[(6.,4) @65, A4) | =(5,4)®(5,,A4,).
This completes the proof. ]

Proposition 4.8: Let (6,,A) and (,,4,) be non-empty PPINSS over the universe U. Then
(@) (6,,4)0(6,,4,)=(5,,4,) ©(6,,4);

c

@) [(6,,4) ©(8,,4) ] =(5,,4) ©(6,,4,).

Definition 4.9: Let (0, A) be a PPINSS over a universe U. For a fixed parameter A€ A and element
ue U write

(A (w) =(7,(w), 1, (W), k, (w), ¢,(w), v, (W),
with the intuitionistic margin
7,(w) =1-7,(w) - ¢,(u) 2 0.
Let (e [0,1]). The operator (4,) produces the PPINSS
A,(8,4) = (8™, A),
where for every A A and e
3 (D) (W) = (7, (W) + um, (W), 1, (), x,(w), ¢,W) + 1 - w7, (W), v,(«)).

Proposition 4.10: Let u,ve[0,1] with 4 <v. Then for every PPINSS (d,A4) over U, the following
properties hold:

(i) 4,(5,4) € 4,5, A);
(i) 4,(8, 4) = ©(8, A);
(i) 4,(5,4) = ®(5, A).

Proof. For each A€ A and ue U, write

5(2’)(u):(771’K’¢70)7 7[5(/1)(u):1—’l'—¢.
Then, by definition of the operator 4,

A0, N)>(+on, 1, x,¢+(1-a)r,v),
where 7 =7, (u) 20.

(1) Let 0<u<v<1. Then for the truth and falsity components we have

T+ur <t+vr, o+A-vir<op+(1 - .
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The indeterminacy 7, contradiction x, and unawareness v remain unchanged. Hence, under the
PPINSS subset relation (where higher truth corresponds to “larger” and higher uncertainty corre-
sponds to “smaller” information states),

4,(6,4) € 4,(8,4).
Thus 4, is monotone increasing with respect to p.
(1) Endpoint u =0 corresponds to the necessity operator. Setting u = 0 gives

(0)

=7, ¢V=¢p+r=0+0-7-¢)=1-1.

Hence
4,(0,4)=(1,1,k,1-7,0) =©(J, A).
(111) Endpoint u= 1 corresponds to the possibility operator. For u =1 we have
W=rt+r=rt+(0-17-¢)=1-9¢, ¢V =¢.
Therefore

A(3,0)=(1-9,1,k,0,0) =, A).
O

Definition 4.11: Let (8, A) be a PPINSS defined over a universe U, where for each parameter Ae A
and object ue U,

(D) (w) = (7,1, (wW),x, (w),8,(w),v, (),
and the intuitionistic margin is given by
7[4(u) =1- Ti(u) - ¢1(u)

Let u,ve[0,1] be parameters satisfying u+v <1. Then, the bi-parametric redistribution operator 4,
is defined as

A,,(8,4)=(5"", A),
where for every Ae A andue U,
S (D W) = (7,(w) + ur, (W), 1,(w), &, (W), ¢,W) +vr, (W), v,(w)).
Here:
T () + 0 (W) =1— (1 - — ), (u) <1.

When pu+v =1, the operator fully redistributes the indeterminate margin x,(u), eliminating uncer-
tainty. When u+v <1, aresidual margin (1—u—v)r,(u) is preserved, retaining partial indeterminacy.

Theorem 4.12: Let u,v e [0,1] with u+v <1. Then for every PPINSS (0, A) the following hold:

(i) 4,,(6,4) is a PPINSS;
(ii) If0< y <y then A,,(8,4) € 4,,(8, A);
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(iid) If 0< x <v then A,,(8,4) € 4, (8, A);

(iv) A,(8,4)=4,, (5,4
() ©(8,4)=4,,(5,4);
(1) ®(6,4) =4 ,(5,4);

i) ((4,,8.0) =4,,(5°,4)|, and hence ((4,,(8,4 ) = 4,,(5,4)).

Proof. Fix Ae A and ue U and write
o) (u) =(r,1,x,0,0), r=1-7-¢(=0).
(1) For 4, we have
" =+ um, "V =p+vrm.
Clearly 0<7t"" <7+7=1-¢<1 and 0<¢“"” <gp+xr=1-7<1. Moreover
T + " =+ p+(u+v)r=1-1-u-v)r<li,

since #+Vv <1 and 7 >0. The other components remain in [0, 1] unchanged. Thus 4,,06,4) satisfies
the PPINSS bounds.

(1) If0<y<uthen
T+ YT <T+ Uur,

while ¢ and the uncertainty components are unchanged. By the PPINSS-subset convention, we obtain

A,,(8,4) € 4,,(6,A).

(1)) If 0< y <v then
o+vm 2o+ yrm,
so the PPINSS-subset ordering gives

A,,(8,4) € 4, (5, 4).

(iv)—(vi) are immediate from the definitions by setting v =1- u, (¢,v) =(0,1) and (1, 0) respectively.
(vi1) Using the complement mapping

(r,,x,0,0) =(p,1-1,1-x,7,1-0),
compute the complement of 4, (J, A). Starting from
SN (AN)(w) =(t+ um,1, x, ¢ +vr, v),
its complement is
(AW(&A))C S(@+vr,1-1,1—k, T+ um,1-v).
On the other hand, the complement set d¢ has

o Vw)=(,1-1,1-x,7,1-0),
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whose margin equals the original 7. Applying 4, , to J° yields
4, ,00540)>@+vr,1-1,1-K,7+ ur,1-0),

which coincides with the previous complement. Hence

(4,,(8,1) =4,,(5°,4).
Taking complements again gives the stated proof. ]
Definition 4.13: Let (8, A) be a PPINSS over universe U. For u,v e [0,1] define the operator

®,,(8,4)= (6", A)
by, for every Ae A andue U,
U (W) W) = (1T 05 (W), 1y (W), Ky W), V By (W), V5, (W)

Theorem 4.14: Let u,v, y € [0,1]. Then for every PPINSS (0, A) the following properties hold:

(i) @,,(5,4) is a PPINSS;
(i) If u<y then @,,(5,A) € ®,,(5,4);
(i) If v < y then @, ,(5,4) > @, (5, A);
(iv) For all u,v,y,0€[0,1],
@, (P,5(5,0)=0, (5,)=D,,(®,,(5,4)).

W) (2,,(8,4) =9, ,(5°,4), and hence (@,,(5,4)) =®,,(3,A).

Proof. Fix Ae A and ue U and write
oM (u) =(r,,,x,9,v), 71,1,k,¢,0e[0,1], T+9<1.
(1) The new truth and falsity are
r=ur, ¢ =vep.
Clearly 0<7'<u <1 and 0< ¢’ <v <1. Moreover
7'+ ¢ = ur +vp <max{u,vi(r +¢) <max{u,v} <1,

since 7+ ¢ <1 and max{y,v}<1. The remaining components are unchanged and lie in [0,1]. Thus
4,,(6, A) satisfies the PPINSS constraints.

(1) If 4 <y then (ur < y7) for every 7€ [0,1]. The uncertainty components are identical; hence by the
PPINSS-subset ordering (truth nondecreasing, uncertainty components nonincreasing) we have

®,,(5,N)E®, (5,A).

(1) If v < y then (vo < y¢). Since larger falsity corresponds to a “smaller” information state under €
(see subset definition), we obtain

®,,(5,4)>®, (5,A).
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(iv) Apply D, first:
qﬁw(é', A) 3 (y7,1,K,00,0).
Applying @,, to this yields
(7)1, K,v(69),v) = (LY T,1, K,VO, V).
Symmetry of multiplication gives the other order; hence the compositions coincide and equal D, s
(v) Using the PPINSS complement mapping
(a,B,7,0,¢) =(01-B1l-y,al—e),
compute the complement of @, (6, 4). Starting from
@,,(6,4) 3 (ut,1,k,v$,v),
its complement equals
¢, 1-1,1 -k, ur,1-v).
On the other hand, the complement 6°¢ equals (¢,1 —1,1 — x,7,1 — v), and applying @,, to ¢ gives
o, 1-1,1 -k, ur,1-v),
which coincides with the previous expression. Therefore
(@,,06,0) =, (5,4
Applying complement again yields the double-complement equality
(@,,8,47) =®,,(5,4).

This completes the proof. t

5. Similarity Measures and Pattern Recognition Applications

Building upon the nonlinear algebraic behaviour of the © operator, we construct a family of similar-
ity measures for PPINSS. These measures are designed to quantify both direct and interaction-based
relationships among PPINSS elements, providing a unified framework for pattern recognition and
decision analysis.

Definition 5.1: Let X =(6,,4,) and Y =(5,,4,) be two PPINSS over the same universe U. We define
three types of similarity measures:

(1) Direct © -Similarity:

1 > .
[GD (X,Y)= mk;/b ;[; w, - szmk(é‘l(ﬂ)(u),é'z (ﬂ)(u))}

where the componentwise similarities are given by:
sim,(7,,7,)=1-17, -7, 1, sim,(1,,1,) =1-1, —1, |,
Sim3(K'1,K'2)=1—|K'1—K'2|, Sim4(¢1’¢2):1_|¢1_¢2|’

sim,(v,,0,) =1-1v, -0, |.
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5
Here, w, € [0,1] are weight coefficients satisfying Zwk =1.
k=1
(2) Combined © -Similarity:
[6.(X,Y)=6,(X0Y,XNY),

which evaluates how the nonlinear © -interaction between X and Y aligns with their shared intersec-
tion region.
(3) Weighted Comprehensive Similarity:

G, (X,Y)=a6,(X,Y)+ B6,(X,Y)+ 76, (X ,Y), where a+f+y=1.

The parameters o, B,y [0,1] allow the analyst to emphasize direct, interaction-based, or comple-
ment-invariant similarities according to the decision context.

Theorem 5.2: Let X, Y, Z be PPINSS over the same universe &/. With component weights w, € [0,1]
5

satisfying Zwk =1 and convex parameters «,f,y€[0,1] with o+ S+ y =1, the similarity measures
k=1

S,, 6,, and &, satisfy:

(i) 0<6.(X,Y)<1 for xe {D,C,W};

(1) 6.(X,Y)=1if and only if X=Y;

(1) 6,.(X,Y)=6.(Y,X);

(iv) 6.(X°,Y")=6.(X,Y), provided w, =w, (i.e., equal weights for truth and falsity components);

(v) For the direct similarity measure,

5
S, XV)21-— 3 S N, (d,(X, Z: A u) +d,(Z,Y; Aw)),

| A LA, |‘|ulieA1uA2ueu k=1
where d,(A,B;A,u) denotes the absolute difference of the k-th component between sets A and B at
parameter A and element u.

Proof. (i) For each component, sim,(a,b) =1 —|a —b| where a,b€ [0,1], so 0<sim,(a,b)<1. Since the
weights w, are non-negative and sum to one, their convex combination also lies in [0,1]. Averaging
over A and u preserves this range. The combined measure G, is a convex combination of bounded
terms &, 6., and &,(X‘,Y"), so 0<6.,(X,Y) <1 for all cases.

(ii) If 6,(X,Y)=1, then for every 4, u, the inner weighted average of sim, equals 1. Because each
sim, <1 and weights are positive, we must have sim,(a,b) =1 for all k, which implies |a—b| =0 and
hence a = b for all components. Therefore &,(4)(u) =6,(4)(v) for all A, u, so X=Y. Conversely, if X=7Y,
then every |a—b| =0,s0 6,(X,Y)=1. The same reasoning holds for &, and &, since they are derived
from &,,.

(iii) For each component, sim,(a,b)=1-la-bl=1-|b—al=sim,(b,a), hence &,(X,Y)=6,(,X).
The operators © and N are symmetric, so 6,(X,Y)=6,(Y,X). Consequently, &, is also symmetric.

(iv) Let the complement of each element be (7,t,x,¢,v)° =(¢,1 —1,1 — k,7,0). Then componentwise:

sim® =1-¢, — ¢, |, simj =1-17 -1, |,
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s ¢ sooC

simg =1-|x -k, |, sim; =1-|7, -7, |,
e

sim; =1-|v, — v, |

Thus, the set of similarity values for (X¢, Y°) is identical to that for (X, Y) except that the truth and
falsity components are interchanged. If the weights satisfy w, = w,, the inner weighted sum remains

unchanged, hence 6,(X“,Y‘)=6,(X,Y). Since © and N are complement-consistent, the same invari-
ance holds for &, and &,,.

(v) For any real a,b,ce [0,1], the triangle inequality gives |a - b| < |a - c| + |c - b| . Therefore,
1—|a—b| 21—(|a—c|+|c—b|).
Applying this to each component & of 6(4)(v), multiplying by w,, and summing over k, we obtain

;wk (1—|a—b|)2;wk [1—<|a—c|+|c—b|)].

Averaging over all parameters and universe elements preserves the inequality, yielding the stated
additive triangle bound for &,,. O

Algorithmic 1: PPINSS Pattern Recognition using Similarity Measures (improved)

Require: Database of reference patterns {P,,. . . .. , P}, query pattern @, weight parameters («, ,7)
Ensure: Best matching pattern, confidence score, and normalized rankings

1: Ensure weights sum to one: if o+ f+ y#1, set

(a’ﬁ7 7) F;(Q,ﬂ, 7)
a+p+y

2:  Initialize S, <0 foralli=1,...,n
3: for each pattern P, in database do
4. Preprocessing: compute nonlinear signature

T(P)« P.oP:
5: Compute direct similarity:

5, < 6,(Q,F)
6: Compute combined similarity (uses © and intersection):

5. < 6.QP)=6,(Q0P.QNP)

7 Compute complement similarity:

55 < 6,(Q°, F)
8: Optional (recommended) operator-based similarity using nonlinear signatures:

5, —6,(0.(Q,P),0.(P,T(P)))

9: Aggregate weighted score (if s, used, give it a small weight 6, or fold it into 3):

Si <~ aSil + ﬂSiZ + 7Si3
(If using s,,,you can use e.g. S, < (1-9)S, +Js,,.)
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10:
11:
12:
13:
14:
15:
16:
17:

18:

19:

end for
Identify best match(s): I" < argmax, S, if multiple, apply tie-break below
If [17*]|>1 thene
choose i" € I" by (in order): highest s,, then highest s,, then smallest index
else
1* < the (unique) element of I*
end if
Compute confidence score:

confidence - ——
Ss
i=1

Normalize scores:

Sl Sn
norm _ scores < .

PAREE]
max, S, max, S,

return (P* norm_scores)}

5.1. Pattern Recognition Algorithm. We now present a comprehensive pattern recognition frame-
work that utilizes the proposed PPINSS similarity measures.

The operational flow of the proposed PPINSS recognition model is depicted in Fig. 1. It illustrates
how the nonlinear © operator functions as a preprocessing stage before similarity computation, pro-
viding a more robust basis for pattern differentiation.

5.2. Medical Diagnosis Application. To illustrate the applicability of the proposed PPINSS simi-
larity framework, consider a medical diagnosis system comprising three diseases and a patient profile.
Symptoms are represented as PPINSS over the universe U = {fever, cough, fatigue} with parameters
A = {severity, duration}.

Disease Patterns.

o Influenza (D,) — high fever, moderate cough, high fatigue:

o, (severity)(fever) =(0.8,0.1,0.1,0.1,0.1),
o, (severity)(cough) =(0.7,0.2,0.2,0.2,0.1),
o, (duration)(fatigue) = (0.6,0.3,0.2,0.3,0.2).

o COVID-19 (D,) — very high fever, mild cough, very high fatigue:

o, (severity)(fever) =(0.8,0.1,0.1,0.1,0.1),
o, (severity)(cough) =(0.7,0.2,0.2,0.2,0.1),
0, (duration)(fatigue) = (0.6,0.3,0.2,0.3,0.2).

o Common Cold (D,) — low fever, high cough, moderate fatigue:

Patient Profile (P).

o, (severity)(fever) =(0.4,0.3,0.4,0.5,0.3),
0, (severity)(cough) =(0.3,0.4,0.4,0.6,0.3),
0,(duration)(fatigue) = (0.5,0.3,0.3,0.4,0.2).

0, (severity)(fever) =(0.8,0.2,0.1,0.1,0.1),
0, (severity)(cough) =(0.7,0.2,0.2,0.2,0.1),
0, (duration)(fatigue) =(0.7,0.2,0.2,0.2,0.1).
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Parameter Consistency. Fever and cough are evaluated using the “severity” parameter, while
fatigue is assessed via the “duration” parameter. This aligns with clinical practice, where duration is
diagnostically more relevant for fatigue, and severity is emphasized for fever and cough.

Similarity Framework. Using the proposed PPINSS similarity measures:

e &, Direct similarity between patient and disease patterns.
¢ 6, Complement-based similarity.
e 6,(P,D): Similarity between complement patterns.

The aggregated similarity is computed as:
S, =a6,(P,D,))+ pS.(P,D,))+ yS,(P°,Dy),

with weights o= 0.4, 8= 0.4, and 7 = 0.2.

Input Stage
Guery PPINSS @ and Databasze {Py,...,F,} _

T
[ Nonlinear Preprocessing
| Compute T(P;) = P & Ff

L F

v
PPINSS Operators
Apply &, M, (-)° transformations

. "

r
Similarity Computation ‘

{EDEQ:- P'Ii:': EG":Q: Pi} E‘D[Qcﬁ Pf:'

r

ir Weighted Aggrepation ]
S; =aGp + f6c + vEp(Q°, Fy)

&
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Figure 1: Workow of the PPINSS similarity-based pattern recognition system.
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Similarity Computation.
6,(P,D)=0.85 &,(P,D,)=0.78, &,(P°,Df)=0.83,
6,(P,D,)=0.92, &6.(P,D,)=0.85 &,(P°,D;)=0.90,
S,(P,D,)=0.45, 6,(P,D,)=0.38, &,(P‘,D;)=0.42.
Weighted Aggregation.
S, =0.4(0.85) +0.4(0.78) + 0.2(0.83) = 0.818,
S, =0.4(0.92) + 0.4(0.85) + 0.2(0.90) = 0.888,
S, =0.4(0.45) + 0.4(0.38) + 0.2(0.42) = 0.416.

Diagnosis Results.

o Primary Diagnosis: COVID-19 (D,), with confidence:

S, 0888 ) 4186 (41.86%).

. 2.122
=1

Confidence =
Si

15

o Secondary Diagnosis: Influenza (D).

S 0.9212(92.12%), 5

S, 2.8

i

=0.3856 (38.56%).

o Tertiary Diagnosis: Common Cold (D,).

Si _ 0.4685 (46.85%). >

S, Y'S,

i

=0.1960 (19.60%).

Clinical Interpretation. The close similarity between the patient profile and D, (COVID-19), fol-
lowed by D, (Influenza), reflects the symptomatic overlap among respiratory infections. However,
the model effectively distinguishes these from D, (Common Cold), demonstrating its diagnostic sen-
sitivity and robustness. The nonlinear © operator and complement-based similarity enhance the

PPINSS Similarity Measures Comparison

Similarity Measures
1.0+ Il Direct
[ Complement
0.92 .
0.90 H Complement-Direct
0.85

0.8 1
v
=]
o]
v 0.6
>
=
‘=
o 0.45
E - 0.42
Y oo4 0.38

0.21

0.0 - T T

Influenza CovID-19 Common Cold

Diseases

Figure 2: Comparison of PPINSS similarity measures (&,,5., and 6,(Q°,P’)) across
disease profiles. The weighted similarity &;, exhibits enhanced discriminative power and
complement invariance.
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framework’s ability to capture partial contradictions and latent symptom uncertainty, resulting in a
more reliable and context-aware diagnosis.

5.3. Graphical Analysis of PPINSS Similarity Measures. To visualize the performance of the
proposed similarity model, Fig. 2 presents the comparative similarity scores obtained for the three
diseases across the direct, complement, and complement—direct measures (&5,,5.,,6,(Q°,P’)). The
results clearly demonstrate that the weighted similarity measure 6, achieves higher diagnostic dis-
crimination, with COVID-19 showing the highest confidence (41.8%), followed by Influenza (38.6%)
and Common Cold (19.6%). This confirms the model’s capacity to handle uncertainty, contradiction,
and contextual ignorance in real-world medical decision systems.

6. Conclusion

In this work, we established the algebraic structure of the PPINSS framework. Through an exten-
sion of the traditional neutrosophic as well as quadri-partitioned soft set models, PPINSS provides a
five-valued logical structure that includes truth, indeterminacy, contradiction, falsity and contextual
ignorance. At the center of this definition is the intuitionistic interdependence of truth and falsity,
articulated by the balance relation 7 =1-7—-¢ that promotes boundedness and semantic consistency
within the multi-valued universe. The fifth aspect—contextual ignorance—facilitates direct repre-
sentation of hidden or delayed knowledge and, therefore, real-world uncertainty that is incomplete,
dynamic, or context-dependent. A comprehensive set of algebraic operators was introduced and stud-
ied, encompassing the necessity and possibility transformations (®,®), the aggregation operators
(®,0) and the parametric transformation families (4,,,9,,)- Each operator was systematically tested
for algebraic soundness, meeting properties including commutativity, associativity, idempotency,
monotonicityand duality. The findings verify that the PPINSS structure is both logically coherent and
algebraically closed, with conventional neutrosophic and quadri-partitioned models presenting them-
selves as special cases—hence ensuring continuity throughout the neutrosophic hierarchy. Addition
of the fifth component is not just an addition to the structure but a functional requirement in order
to express multi-context, time-varyingand conflict-ridden informational systems. PPINSS thus pres-
ents an expressive and computationally feasible basis for managing multi-layered uncertainty and
as such 1s a useful instrument for multi-criteria decision analysis (MCDA), distributed intelligence,
expert evaluation systems, and cognitive reasoning environments. Directions for future work encom-
pass the construction of PPINSS-based aggregation and entropy measures, similarity and distance
measure formulationand optimization-based decision algorithm integration. Additionally, practical
application of PPINSS to domains like healthcare diagnostics, engineering design optimizationand
real-time uncertainty modeling will prove robustness, interpretabilityand computational efficiency.
The algebraic structures shown here thus form a strong theoretical foundation for advancing neu-
trosophic soft set theory to richer, intuitionistically inspiredand application-focused models of uncer-
tainty representation.
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