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Abstract
In this research, we establish two recently formulated subclasses belonging to the bi-univalent 
analytic functions characterised by the generalized Sălăgean operator l ( )nI f z . The first subclass 

S a g l ( , , , , )n p  consisting of bi-univalent functions within the unit disk  and its extended form of 
subclass S a b g l ( , , , , , )n p  are defined by specific argument conditions involving parameters a, b, g, l, 
n and p. Using the concept of subordination and functions with a positive real part, the initial coeffi-
cients |a2| and |a3| are estimated with established limits. The results generalise and unify several 
existing subclasses of analytic and bi-univalent functions. Special cases are discussed to demonstrate 
the significance and sharpness of the obtained estimates. Additionally, we also analyse the geometric 
behavior of functions under this new operator.
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1. Introduction

In geometric function theory, analytic and bi-univalent functions are often studied because they offer 
important insights into complex mappings, especially with the use of differential operators to define 
new subclasses of functions. Many researchers have focused on estimating the initial coefficients 
of bi-univalent functions because these coefficients reflect important geometric properties such as 
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growth, distortion and univalence [5]. Several subclasses of bi-univalent functions have been intro-
duced in the literature using different operators and argument conditions, leading to a variety of 
coefficient problems and structural results [4, 8, 9]. 

In recent years, the Sălăgean differential operator and its various generalisations have become 
important tools in the study of analytic and bi-univalent functions. Several researchers have used 
these operators to define new subclasses and to investigate their geometric and coefficient proper-
ties [3, 6]. In particular, these operators have proved useful in obtaining coefficient bounds, Fekete–
Szegö type inequalities, and estimates for Hankel determinants under different geometric conditions. 
Motivated by such developments, many authors have introduced subclasses involving argument 
constraints, subordination principles and bounded boundary rotation in order to derive new coeffi-
cient inequalities [1, 2, 7, 10, 11]. These studies demonstrate how operator-based techniques can be 
effectively combined with geometric assumptions to extend classical results. Güney et al. [23] pro-
posed several generalised classes of analytic functions by applying appropriate analytic operators 
together with subordination-type conditions. Their work mainly addresses inclusion relationships 
among these classes, along with coefficient estimates and distortion theorems, thereby enriching the 
existing theory of operator-defined function classes. Naik and Sahoo [24] examined the Fekete–Szegö 
functional for a subclass of analytic functions defined via the Sălăgean operator associated with a leaf-
shaped domain. They obtained sharp bounds for the functional m- 2

3 2a a  under suitable geometric 
restrictions. Their results not only extend earlier inequalities but also illustrate the adaptability of 
the Sălăgean framework to non-classical domains.

Furthermore, Sharma et al. [25] studied subclasses of bi-univalent functions connected with 
q-analogues of the Sălăgean operator. By considering bounded boundary rotation and quasi-convexity 
conditions, they derived bounds for the initial coefficients of bi-close-to-convex and bi-quasi-convex 
functions. In a related direction, Ali et al. [26] analysed a subclass of analytic functions defined using 
the q-Sălăgean derivative operator. Their main contributions include estimates for the second Hankel 
determinant and the Fekete–Szegö functional, offering further insight into the coefficient behavior of 
these functions.

This research presents and investigates two newly defined subclasses of bi-univalent functions 
using the generalized Sălăgean operator. The first subclass S a g l ( , , , , )n p  is based on an argument 
constraint involving the parameters a , b, g, l, n and p. The second subclass S a b g l ( , , , , , )n p  extends 
this idea by introducing an additional parameter b which helps further control the argument condi-
tion. For both classes, coefficient bounds are obtained for the initial coefficients a2 and a3 by applying 
subordination techniques and using the expansions of the generalized Sălăgean operator acting on 
the function and its inverse  [12, 14, 21]. 

Definition 1: A function given by

	
¥

=

= + å
2

( ) n
n

n

f z z a z � (1)
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where = - + - - - + +�2 2 3 3 4
2 2 3 2 2 3 4( ) (2 ) (5 5 ) ,g w w a w a a w a a a a w

and 
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is the generalized Sălăgean operator.

2. Methodology

The analysis is carried out by considering analytic and bi-univalent functions expressed as
¥

=

= + å
2

( ) ,n
n

n

f z z a z

together with their inverse expansions. To study the subclass S a g l ( , , , , )n p , the generalized 
Sălăgean operator l ( )nI f z  is applied to both f and its inverse g = f –1. The operator transforms the coef-
ficients of the function into parameter-dependent forms that allow precise comparison. The defining 
argument condition is converted into a subordination relation by introducing a Carathéodory function 
j( ( ))z  with positive real part. This allows the expression

l la a +- + 1(1 ) ( ) ( )n nI f z I f z
z

to be expanded and compared term-by-term with the series expansion of gj( )z . Using standard 
bounds on the coefficients of j , the relevant coefficients a2 and a3 are estimated. The same procedure 
is repeated for the inverse function to ensure bi-univalence.

3. Main Results

We begin by proving several theorems based on the operator classification.

Theorem 1: (Coefficient Bound for the Function Subclass  ( , , , , )n pS a g l

According to (1), the function f(z) is included in the subclass S a g l ( , , , , )n p , whenever the following 
conditions are satisfied:

For g a lÎ £ < ³ ³�, 0 1, 1, and 0n . Then the second and third coefficients of the function f(z) sat-
isfy the following inequalities: 

g
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Proof. Let = + + +�2 3
2 3( )f z z a z a z  belong to the subclass S a g l ( , , , , )n p  defined by
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l la a gpS
+æ ö- +

Î < Îç ÷
è ø

1(1 ) ( ) ( )and arg , ,
2

n nI g w I g wg w U
w

where -= 1g f  has the expansion = - + - - - + +�2 2 3 3 4
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And

l l
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is the generalized Sălăgean operator.
Now the argument condition is 

l la a gp+æ ö- +
<ç ÷

è ø

1(1 ) ( ) ( )arg
2

n nI f z I f z
z

implies that the quantity inside the argument lies in a sector of angle gp , which is equivalent to 
there exists a function j( ( ))z  whose real part is positive in the unit disk U, and j (0) = 1 such that

	 gl la a j
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= é ùë û
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Let us write j = + + +�2
1 2( ) 1 ,z c z c z  with jÂ >( ( )) 0z  for Î .z U  Using the standard subordination 

principle, we know that £ £1 22 and 2c c . From the definition of the operator l ( )nI f z , we only consider 
terms from ³j p, but since our function starts from z, we adjust the definition by noting that the oper-
ator acts starting at z, not - pz . We define:
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So,

	 l la a +- + = + + +�1 2 3
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Then we have:
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Which should match the expansion of gj( )z , given by
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However, the theorem simplifies this and uses only the first part (excluding the a-term), we get
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Hence, the theorem is proved for the class S a g l ( , , , , )n p .� 

Corollary 1. (When a = 1)

If S g lÎ (1, , , , ),f n p  then the bounds reduce to:

g g g
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This gives sharper bounds when the entire contribution comes from the higher-order Sălăgean 
operator.

Corollary 2. (When l = 0)

If S a gÎ ( , ,0, , )f n p , then
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This simplifies the effect of the operator by eliminating the l-weighted shift, showing the pure 
Sălăgean operator behavior.

Corollary 3. (When g ® 0)

As g ® 0, both coefficient bounds approach zero:

g g® ®
= =2 30 0

lim 0, and lim 0.a a

This matches the geometric idea: when g is smaller, the function is more strictly limited, so the coef-
ficients become smaller.

Definition 2: A function given by
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and 
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is the generalized Sălăgean operator.

Theorem 2: (Coefficient Bound for the Function Subclass  ( , , , , , )n pS a b g l )

Let a function f(z) belongs to the subclass S a b g l ( , , , , , )n p  whenever the following conditions are 
satisfied:

For g b a lÎ £ < £ < ³ ³�,  0 1,  0 1,  1,  and 0.n  Then the initial coefficients a2 and a3 of the function 
f(z) satisfy the following sharp bounds: 
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and similarly for the inverse function g(w), now we derive the final coefficient bounds for |a2| and 
|a3|.
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Similarly, 
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Hence the theorem proved for the class S a b g l ( , , , , , )n p .� 

4. Conclusion

The paper focuses on formulating and studying two specific subclasses of bi-univalent analytic 
functions defined through the generalized Sălăgean operator l ( )nI f z . By imposing argument condi-
tions on both the function and its inverse, we establish coefficient bounds on the leading Taylor coef-
ficients of functions associated with the given subclasses S a g l ( , , , , )n p  and S a b g l ( , , , , , )n p . The 
methodology relied on converting the argument constraints into equivalent subordination relations 
involving Carathéodory functions with positive real part. This approach enabled us to compare the 
transformed operator expressions with power series expansions and obtain explicit bounds for |a2| 
and |a3|. The derived estimates clearly illustrate how the parameters a, b, g, l, n and p influence the 
growth and behavior of the coefficients.

Further, several special cases are analysed, leading to simplified bounds when particular parame-
ters were fixed, demonstrating the flexibility and generality of the proposed subclasses. These results 
also provide a foundation for future research on higher-order coefficients, Fekete–Szegö inequalities 
and geometric properties associated with generalized differential operators.

Bibliography
[1]	 Á. O. Páll-Szabó and G. I. Oros, Coefficient related studies for new classes of bi-univalent functions, Mathematics, 8(7) 

(2020), 1–13.
[2]	 M. Darus and S. Singh, On some new classes of bi-univalent functions, Journal of Applied Mathematics, Statistics and 

Informatics, 14(2) (2018), 19–26.



Debasmita D. et al., Results in Nonlinear Anal. 8 (2025), 35–43� 43

[3]	 M. Çağlar and E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Sălăgean differen-
tial operator, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 66(1) 
(2017), 85–91.

[4]	 S. Porwal and M. Darus, On a new subclass of bi-univalent functions, Journal of the Egyptian Mathematical Society, 
21(3) (2013), 190–193.

[5]	 P. L. Duren, Univalent Functions, Vol. 259, Springer, New York, 2001.
[6]	 S. Li and P. Liu, A new class of harmonic univalent functions by the generalized Sălăgean operator, Wuhan University 

Journal of Natural Sciences, 12(6) (2007), 965–970.
[7]	 N. Tuneski, Some simple sufficient conditions for starlikeness and convexity, Applied Mathematics Letters, 22(5) 

(2009), 693–697.
[8]	 H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied 

Mathematics Letters, 23(10) (2010), 1188–1192.
[9]	 B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters, 24(9) (2011), 

1569–1573.
[10]	 Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent 

functions, Applied Mathematics Letters, 25(6) (2012), 990–994.
[11]	 Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and asso-

ciated coefficient estimate problems, Applied Mathematics and Computation, 218(23) (2012), 11461–11465.
[12]	 A. Murugan, S. M. El-Deeb, M. R. Almutiri, P. Sharma and S. Sivasubramanian, Certain new subclasses of 

bi-univalent function associated with bounded boundary rotation involving Sălăgean derivative, AIMS Mathematics, 
9(10) (2024), 27577–27592.

[13]	 T. Yavuz, Coefficient estimates for a new subclass of bi-univalent functions defined by convolution, Creative Mathematics 
& Informatics, 27(1) (2018), 89–94.

[14]	 H. Tang, P. Sharma and S. Sivasubramanian, Coefficient estimates for new subclasses of bi-univalent functions with 
bounded boundary rotation by using Faber polynomial technique, Axioms, 13(8) (2024), 1–14.

[15]	 D. Breaz, G. Murugusundaramoorthy, K. Vijaya and L.-I. Cotîrlă, Certain class of bi-univalent functions defined by 
Sălăgean q-difference operator related with involution numbers, Symmetry, 15(7) (2023), 1–11.

[16]	 M. Ibrahim, B. Khan and A. Manickam, A certain q-Sălăgean differential operator and its applications to subclasses 
of analytic and bi-univalent functions involving (p, q)-Chebyshev polynomial, Contemporary Mathematics, (2024), 
2124–2133.

[17]	 M. M. Shabani, M. Yazdi and S. H. Sababe, Coefficient estimates for a subclass of bi-univalent functions associated 
with the Sălăgean differential operator, Annals of Mathematics and Physics, 7(1) (2024), 091–095.

[18]	 A. Patil and S. M. Khairnar, Coefficient bounds for bi-univalent functions with Ruscheweyh derivative and Sălăgean 
operator, Communications in Mathematics and Applications, 14(3) (2023), 1161– 1166.

[19]	 E. Amini, M. Fardi, S. Al-Omari and R. Saadeh, Certain differential subordination results for univalent functions 
associated with q-Sălăgean operators, AIMS Mathematics, 8(7) (2023), 15892– 15906.

[20]	 S. K. Mohapatra and T. Panigrahi, Coefficient estimates for bi-univalent functions defined by (p, q) analogue of the 
Sălăgean differential operator related to the Chebyshev polynomials, Journal of Mathematical and Fundamental 
Sciences, 53(1) (2021), 49–66.

[21]	 I. Al-Shbeil, N. Khan, F. Tchier, Q. Xin, S. N. Malik and S. Khan, Coefficient bounds for a family of s-fold symmetric 
bi-univalent functions, Axioms, 12(4) (2023), 1–17.

[22]	 E. Muthaiyan and A. K. Wanas, Coefficient estimates for two new subclasses of bi-univalent functions involving 
Laguerre polynomials, Earthline Journal of Mathematical Sciences, 15(2) (2025), 187–199.

[23]	 H. Ö. Güney, D. Breaz, S. Owa, M. El-Ityan and L. I. Cotîrlă, Some properties of generalization classes of analytic 
functions, Mathematical Inequalities & Applications, 28 (2025), 199–219.

[24]	 A. Naik and S. C. Sahoo, Fekete–Szegö inequality estimate for analytic functions using Sălăgean difference operator 
and leaf-like domain, European Journal of Pure and Applied Mathematics, 18(3) (2025), 1–14.

[25]	 P. Sharma, S. Sivasubramanian, A. Catas and S. M. El-Deeb, Initial coefficient bounds for bi-close-to-convex and 
bi-quasi-convex functions with bounded boundary rotation associated with q-Sălăgean operator, Mathematics, 13(14) 
(2025), 1–16.

[26]	 E. E. Ali, H. M. Srivastava, W. Y. Kota, R. M. El-Ashwah and A. M. Albalah, The second Hankel determinant and the 
Fekete–Szegö functional for a subclass of analytic functions by using the q-Sălăgean derivative operator, Alexandria 
Engineering Journal, 116 (2025), 141–146.


