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Abstract

The primary objective of this article is to provide an accessible exposition of the dynamic and evolving
field of mathematical inequalities, with a particular emphasis on their role in optimization and deci-
sion-making within engineering and the physical sciences. We begin with an elementary introduction
to fundamental inequalities, followed by a range of illustrative examples that span from classical
applications to contemporary research challenges. To demonstrate the breadth and utility of inequal-
ities, we explore examples from diverse areas of mathematics, including the ubiquitous triangle
inequality, which arises in contexts ranging from Euclidean geometry to matrix norms. We highlight
key results, such as the interlacing of roots of orthogonal polynomials, which are elegantly formulated
through inequality frameworks. In number theory, we present select theorems and conjectures—
particularly from the active domain of prime gaps—that are naturally expressed using inequalities.
The article also examines inequalities in physics, such as the Clausius inequality in thermodynam-
ics, constraints on electron localization in atomic structures, and bounds related to the cardinality of
resistor networks. Overall, this paper aims to introduce readers to the techniques and significance of
mathematical inequalities, while showcasing their applications in optimization, theoretical analysis,
and practical decision-making across multiple scientific and engineering domains.
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1. Introduction

Not only the graduate level but even the advanced level mathematics and other science courses
invariably cover inequalities and their solutions. The exposure is from elementary to advanced. The
coverage to this important topic can be enriched with further examples and applications [1-9]. We
shall look at some examples and applications from mathematics and other sciences. Many import-
ant theorems and even conjectures are stated in the form of inequalities. In order to keep the article
self-contained, definitions and brief descriptions are provided where required.

Any quantity 1is said to be greater than another quantity b when a — b is positive. This statement
1s written as a > b. Likewise, we have the statement a < b when a — b is negative. These relations are
known as strict inequalities. The other two possibilities are a > b and a < b. Essentially, inequalities
are a statement of an order relationship (greater than, greater than or equal to, less than, or less than
or equal to) between two numbers or algebraic expressions.

Euclidean geometry provides one of the oldest inequalities, which is known as the triangle inequal-
ity theorem. It states that the sum of any two sides of a triangle is greater than or equal to the third
side. Symbolically, a + b = c. The part, or equal to is often excluded as it leads to the degenerate trian-
gles. Essentially in the Euclidean geometry, the theorem states that the shortest distance between
two points is a straight line. The triangle inequality appears in other forms depending on the topic.
For any two real numbers, the absolute values satisfy |a| + |b| > |a +b| . For vector lengths (norm), we
have ||A|| + ||B|| > ||A + B” For any two complex numbers, the moduli satisfy |21| + |22| > |z1 + 22|.

Many inequalities can be derived from the fact that the square of any real number is greater than
or equal to zero. Symbolically, R* >0 and the equality occurs only when R = 0. As an example

(a-b)’=a*-2ab+b*>>0

1.1
a® +b* > 2ab. (1.1
If we substitute a =x and b= l, then
X
1
x+—2>2. (1.2)

X

This inequality can also be derived using the minima/maxima technique via derivatives from calculus
[10-12].

Let a,, a,, a,, ... a, be n positive real numbers. The arithmetic mean (A,), the geometric mean (G))
and the harmonic mean (H ) are defined by

a ta,+a,++a,

A = , (1.3)
n
G, =%aa,a,--a,, (1.4)
n
B=3——77 17 (1.5)
R + JE— + R + e + -
al a2 a3 an
The inequalities between the three means are [13]
A >2G 2H,. (1.6)

and equality occurs iff @, =a,=q, =---=aq,.

n

Cauchy-Bunyakovsky—Schwarz Inequality:
If (a,,a,,qa,,...,a,) and (b,,b,,b,,...,b,) are two sequences of real numbers, then
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|22

The equality occurs if the sequences (a,,a,,q,,...,a,) and (b,,b,,b,,...,b,) are proportional, i.e., there
is a constant A such that a, = Ab, for each ke {1,2,3,...,n} . This inequality occurs in many areas of
mathematics and sciences.

Exponential Inequality:
The exponential and power inequalities include

e* 21+ x,for any real x, (1.8)
P _ P _

x> ip s 0and p> 0. (1.9)
p px’

Bernoulli’s Inequality:
The Bernoulli inequality states

(1+x)r >1+rx, forr>1 and x>-1,
\ (1.10)
(1+x) <l+rx, forO<r<1 and x>-1.

A Solved Example:
As an application, let us consider the following example [14]. Find the integer part of the series for
the first one million terms,

S R
SR

Solution: Let us first obtain inequalities for L

In
(T Vi) (1 447
(Va1 o)

2 1

= <

(Vmet i) o

Note, that Vvn+1 > Jn. The upper bound is obtained by starting with 2n —2Jn-1. Combining the
two bounds, we obtain

2\/n+1—2ﬁ<%<2\/ﬁ—2\/n—1. (1.12)
n

To get the bounds of S(n), we add the inequalities

1
W3-2v2 < E<2J§—2ﬁ

1
oJi-23 < E<2\/§—2J§ (1.13)

S(n)=1+

own+1-2Jn =

(1.11)

odn+1-2Jn < %<2\/ﬁ—2\/n—1.
n

The first and last part of (1.13) are telescoping and we obtain
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2n+1-2J2<S(n)-1<2Jn -2,
2Jn+1-2v2+1<8(n)<2Jn-1.

The difference of the upper bound and lower bound is 2(\/5 —1) - 2(\/ n+1-+/n ), which is less than
1 for all n. When n = 10°, 2410° +1 - 242 +1=1998.17 and 2v/10° —1=1999. With 24/10° —1=1999,

the integer part of S(10), written symbolically, we have LS (106 )J =1998. If we had started with n =1
in (1.13), we would have used 1 <2 and obtained S(n) < 24/n and not the better bound of S (n)< a/n -1

. Hence, utmost care is to be exercised while using inequalities in order to get better bounds.

(1.14)

2. Inequalities from Trigonometry

We note some inequalities from trigonometry [15-23]. For an angle, 6 (measured in radians) in the
first quadrant, we have

29 <sinf <6, (Jordan’s Inequality) (2.1)

V4

1- 2 0 < cosb, (Kober’s Inequality) (2.2)
T

l—cosf <6, (2.3)

sind < @ < tan@, (2.4)

c050<¥<1. (2.5)

Aristarchus’s Inequality:
If @ and B are two angles in the first quadrant and o > § then

sinad « tana

<—=< .
sinf [ tanf

(2.6)

3. Inequalities from Calculus and algebra to optimization

We now list important inequalities from calculus and inequalities that bridge algebra with optimiza-
tion theory. These are foundational in linear and nonlinear programming, especially in the context of
convex of convex analysis, and optimality conditions. There are a number of inequalities for Riemann-
integrable functions [10-12]. We list some of them below:

1. A very basic inequality for integrals is given below
b
Ifz(x)dxzo. CRY)
2. If f(x) is an integrable function on [a, b] and m < f(x) < M for all x in [a, b], then

m(b-a)< [ f(x)dx<M(b-a). (3.2)

3. If f(x) < g(x) for each xin [a, b], then

| ” fyde< | ig(x)dx. (3.3)
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4. The case of absolute value

Iif(x)dx < filf(x)| dx. (3.4)

5. The Cauchy—Schwarz inequality for integrals
(jif(x)g(x)dxf <([ (7)) ax ([ (2 () ax ). (3.5)

6. If
b q

with p,q > 1. Then the Holder inequality for integrals states
1/q

b b B Vb ap q
Ja|f(x)g(x)|dx < (L f(x)| dx ) (Ja|g(x))| dx ) . (3.6)
For the real numbers x,ye R, and x,y >0, p the following hold:

x+y>2xy. (AM -GM Inequality) (3.7
Equality holds if and only if x = y. This is used to establish convexity and lower bounds.

|x + y| < |x||y| (Triangle Inequality) (3.8)
This is used in normal spaces and in convergence analysis of optimization algorithms.

(x+ y)2 < 2(9c2 + yz). (Cauchy’s Inequality) (3.9)

Helps in bounding expressions involving squares of variables.

2
[Zaiz J[be ]2 [Zaibi ] (Cauchy — Schwarz’s Inequality) (3.10)
i=1 i=1 i=1

Used in proving dual feasibility and bounding inner products in vector spaces.

f(Ax+(1- l)y) <Af(x)+(1-2)f(y), 0<A<1. (Cauchy Function Inequality) (3.11)

1 1
[i|aibi| ](i]ai " ]ﬁ [2|bi|q ]q (Cauchy — Schwarz’s Inequality) (3.12)
i=1 i=1 i=1

A generalization of Cauchy-Schwarz used in norm bounds.

4. Orthogonal Polynomials

Any sequence of polynomials {P (x)} in which the degree of P (x) is n for all n is said to be orthogonal
with respect to the measure do(x) if

[P.(x)P, (x)de(@)=0, nzm, @
f’;pn (x)P, (x)de(x)#0, VYn=0.

The limits of integration can be finite (as in the case of Laguerre polynomials and Jacobi polynomi-
als) or infinite (as in the case of Hermite polynomials). When this measure is absolutely continuous,
le., do(x) = w(x)dx, where w(x) is called the weight function, then the relations in (4.1) become
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m

IZPn(x)P (x)w(x)dx=0, n#m, B
Iipn(x)Pn(X)w(x)dxvtO, Vn>0. (4.2)

The classical orthogonal polynomials are Hermite polynomials, Laguerre polynomials and Jacobi
polynomials [24—-26]. The orthogonal polynomials occur across mathematics and sciences. They have
many properties and we note the following two. The roots of the orthogonal polynomials are all real,
distinct and lie in the interval of orthogonality. This property acquires an extra significance as no for-
mula is known for the roots of any of the orthogonal polynomials with the exception of the Chebyshev
polynomials. The Chebyshev polynomials are one of the special cases of the Jacobi polynomials.
Chebyshev polynomials of the first kind occur in the expansion of cos (m9) =T, (cos 9). Chebyshev poly-
nomials of the second kind occur in the expansion of sin(n@)=sin@U,  (cos8).

Chebyshev polynomials of both the kinds are unique as each of the degree n polynomials have n dif-
ferent simple roots, (known as Chebyshev nodes or Chebyshev roots), in the interval of orthogonality
[-1, 1]. The n Chebyshev roots of T (x) are

X, = COS 2 7| k=0,.,n-1. (4.3)

The n Chebyshev roots of U (x) are

k
= 7|, k=1,...n.
X, cos[n_‘_1 J n (4.4)

As no such formulae are known for any of the other orthogonal polynomials, the topic is of active
researcb interest. Th%+§econd property is the interlacing of zeros (roots) of the orthogonal polynomials.
If {xn,k }k and {xm,k }k:1 denote the consecutive zeros of P (x) and P , (x) respectively, then we have

a< xn+1,1 < xn,l < xn+1,2 < xn,2 i
< xn+1,n < xn,n (4.5)
<x <b.

n+l,n+1
In passing, we note that all these polynomials have been generalized in various ways. One possibil-
ity of the generalizations is through the quantum algebras [27-30].

5. Number Theory

Number theory is known for its rich and growing stock of conjectures often expressed using inequali-
ties! Here, we shall focus on a few of them [31-35]. The product of the first prime numbers is known
as the primorial and denoted by P #. For example, p,#=2x3x5x7x11=2310. The lower bound is
given by Bonse’s inequality and the upper bound is due to Erdés

Pl <D, #=pp,p,--p, <4™ (5.1)

Prime Gaps: A prime gap is the difference between two successive prime numbers. The difference
between the (n + 1)-th and the n-th prime numbers is denoted by g .
Symbolically, we have

8, =Puu— D, (5.2)
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Theorem 1. Bertrand-Chebyshev Theorem: For any integer n > 3, there is always at least one
prime number p such that

n<p<2n-2. (5.3)
A less restrictive statement:

n<p<2n, forn>1.
Equivalent Formulation:

P . <2P.

It is also called Bertrand’s postulate! In 1845, Joseph Bertrand stated this statement as a conjec-
ture with numerical support of n = 3,000,000. In 1852, Chebyshev provided a proof using certain
non-elementary methods. Simpler proofs were later provided by many mathematicians including
Srinivasa Ramanujan (1919) and Paul Erdds (1932). Bertrand—Chebyshev theorem leads to

gn < Pn' (5'4)

The prime gaps is an active area of research employing very diverse techniques. However, many
questions remain unanswered. Many conjectures remain open to be proved or disproved. We note the
following conjectures

1. Andrica’s Conjecture:

\/pn+1 - \/pn <]"
Equivalently: g, <2\p, +1.
This is due to Dorin Andrica (1986). It has a numerical support of n = 4 x 1018,

(5.5)

2. Firoozbakht’s Conjecture:

’H\ll pn+1 < Q/p—n
1

1+=

Equivalently : D,,<P,".
This is due to Farideh Firoozbakht (1982). It is true for all primes less than 2* ~1.844x10".

(5.6)

3. Legendre’s Conjecture: For every positive integer n, there is a prime p such that

n’ <p<(n+1)2. (5.7)

This is due to Adrien-Marie Legendre (1752—1833). It has a numerical support of n=2x10°.

4. Brocard’s Conjecture: For every n =2, there are at least four primes between P; and P... This is
due to Pierre René Jean Baptiste Henri Brocard (1845-1922).

!

5. Oppermann’s Conjecture: For every positive integer n, there is a prime p and another prime p
such that
n(n-1)<p<n’
2 ’ (58)
n<p<n (n + 1)
This is due to Ludvig Henrik Ferdinand Oppermann (1877).
All these five conjectures are strongly interrelated and proof of any one of them implies the proofs
of most others. The size of the n-th prime, p, ~ nln(n) < n’. The average gap between the primes
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N
gn E_zgk
n k=1
— pn+1_2 (59)

n
~In(n).

Likewise, the average of Andrica’s function A, =./p, ., — \/E is
-1
A=—>H»A
n n; k
_ NP -2 (5.10)
n
\/(n+1)ln(n+1) -2

~ <1.
n

On an average, A <1.Thisis another supportive statement (though weak) for Andrica’s conjecture.

6. Matrix Inequalities

Matrices are used in most scientific fields [36—41]. Even classical mechanics has been formulated
using matrices. Maxwell theory of electromagnetism is the correct theory of light. In many situations,
it is not straightforward to deal with the Maxwell equations directly. One possible way to circumvent
this difficulty is to use a matrix representation of Maxwell equations [39—41]. The trace of a square
matrix A, denoted by tr(A), is defined to be the sum of elements on the main diagonal. The sum of the
eigenvalues of a matrix equals the trace of the matrix. The determinant is equal to the product of its
eigenvalues. The trace occurs in many contexts and we note the

tr(A)

Jacobi’s Formula: det (eA ) =e (6.1)
In general, e” e® #e*"? (equality occurs if AB = BA) and the
Golden—Thompson Inequality:
(6.2)

tre*™® <tr (eA eB).

The notion of a matrix norm has some similarities to the magnitude of vectors. There are several
types of matrix norms. The Frobenius norm (also known as the Hilbert—Schmidt norm or Schur norm)
of a matrix is defined as the square root of the sum of the absolute squares of its elements

iﬁaijr. 6.3)

i=1 j=1

|4l =

In terms of trace,

4], =tr(aA"), (6.4)

where A? is the conjugate transpose (also denoted by AY). The Frobenius norm obeys the triangular
inequality

|a+B]<|4]+|8]| (6.5)

and the products have the following inequality
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|4 B]<|4] |B] (6.6)

The matrix norms are widely used in programming and optimization problems.

There are many types of matrices. A matrix A is said to be Hermitian, if A= A (also denoted by
A"). Hermitian matrices have real eigenvalues. Hermitian matrices are fundamental to quantum
mechanics because they describe operators, which necessarily have real eigenvalues. For any n x n
Hermitian matrix, let the eigenvaluesbe 4, =4 <A, <A,---<A =4, then

1
;i’min S _tr(A) S /,i’max' (67)
n
Let us recall that, trace is the sum of the eigenvalues, tr(A) = Z/L There are many inequalities spe-
cific to the type of the matrix. i=1
7. Inequalities from Physics
There are several inequalities restricting certain physical processes. We shall cover just a few of them.

Clausius Theorem: For any thermodynamic system (such as a heat engine or a heat pump) exchang-
ing heat with an external reservoirs and undergoing a thermodynamic cycle, then

28 <

surr

(7.1)

where 6@ is the infinitesimal amount of heat absorbed by the system from the reservoir and 7'

is the temperature of the external reservoir (or surroundings) at a particular instant of time. The
equality holds in the reversible case. As a consequence, the entropy always increases [42].

Heisenberg’s Uncertainty Principle: In regards to a moving particle, there are fundamental
limits to the accuracy with which we can measure its properties. It is impossible to know both the
precise position and the precise momentum of a particle at the same instant. Mathematically, the
product of the uncertainty Ax in the position of a particle and the uncertainty Ap in its momentum in
the x-direction at the same instant is always greater than one-half of the reduced Planck’s constant
h=h/2rx

h
Axap> (7.2)

and the Planck’s constant, A = 6.62607015 x 103* Joule.Second. The position and momentum form
one conjugate pair. The other conjugate pair is energy and time and the corresponding uncertainty
relation is

AAE > g (7.3)

A consequence of the uncertainty principle is that electrons cannot reside inside the atomic nucleus.
The classically assigned size of the atomic nucleus is 5 x 107'® m. If we assign this value to Ax, the cor-
responding value of Ap is 1.1 x 102° kg.m/s. The rest mass energy of an electron is m,c* =0.51 MeV.
Thecorrespondingkineticenergy (KE) calculated usingtherelativisticformulayields KE = \/p*c® + m] ¢*
= pc> (1.1 x107° ) (3><108) >3.3x10 " Joules =20MeV. It has been established by numerous experi-
ments that the electrons emitted by the nuclei through the B-decay (or the rarer double beta decay)
have an energy of less than 5 MeV. Thus, starting with an inequality, it is possible to rule out the idea
that electrons reside inside the atomic nucleus [43].

Scherzer’s Theorem: There is a limit of resolution for electron lenses because of unavoidable aber-
rations. One of the aberrations known as the spherical aberration is always present and it has a
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nonzero value, which is given by this theorem. This affects the performance of electron microscopes
and any device based on electron lenses [44].

Resistor Networks: The properties of sets of equivalent resistances formed by connecting identical
resistors in series and parallel have been studied using diverse techniques including number theory
[45-47]. The inequalities derived using the number theoretic methods are supported by an indepen-
dent investigation that makes use of graph theory [48]. Let us consider the set obtained from three
identical resistors of value R . The equivalent resistances are 3R (all three in series); (1/3)R (all three
in parallel; (2/3) R (block of two in series with one in parallel) and (1/3)R, (block of two in parallel with

one in series) respectively. The corresponding numerical set (multiple of R ) is A(3)= {%,2,2,3} and
the order is |A(3)| = 4. There is no known formula for the order of an arbitrary set |A(n)| and the

following inequalities have been established

1
4 n

(1+2) <|A(n)|<(1—1J(0.318)(2.618)". (7.4)

The lower bound is obtained using combinatorial arguments. The upper bound is obtained using
number theoretic tools of Fibonacci numbers and the Farey sequences. A numerical fit consumes a lot
of computer memory and a study using up to 27 resistors leads to

|A(n)| . ~2.53". (7.5)

8. Concluding Remarks

We noted some basic inequalities from, geometry, trigonometry and calculus. There are thousands of
inequalities and many are being discovered, which is evident by the fact there are even journals con-
taining the word inequalities in their titles. We included the inequalities required in the introductory
mathematics and science courses. We end this article with the following inequality from statistics.
Bhatia—Davis Inequality: If any bounded probability distribution has minimum m, maximum M, and
expected value |, then the variance 62 obeys

o’ <(M—-pu)(u—m). (8.1)

Equality holds precisely if all of the probability is concentrated at the endpoints m and M.

Through the medium of inequalities, some frontline areas of research were described. We saw the
interlacing of roots of orthogonal polynomials. We pointed to the absence of a formula for the roots of
orthogonal polynomials. We noted the easy to express conjectures on the prime gaps, an area of active
research. We also saw some inequalities from physics and their influence on physical processes. In
particular, we used Heisenberg’s uncertainty principle to rule out the idea that electrons can reside
inside the atomic nucleus. Results from sets of resistor networks were noted. We hope that this article
will generate interest in the use of inequalities (and their refinements, where applicable) and in the
set of open problems listed from different disciplines. Lastly, the social inequalities or inequalities in
the society are a crucial topic and of course, way beyond the scope of this article.
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