
Results in Nonlinear Analysis 8 (2025) No. 2, 314–327 
https://doi.org/10.31838/rna/2025.08.02.024 
Available online at www.nonlinear-analysis.com

Received June 10, 2025; Accepted July 18, 2025; Online August 28, 2025

Nonlinear optimization-driven deep learning 
framework for medical image reconstruction via 
partial differential equations
TKS Rathish Babua, P. Sedhupathyb, M. Arunac, V. Srinivasand, Baxodirjon Abdullaeve, Islom Kadirovf

aDepartment of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai - 600 089, Tamilnadu, 
India; bAssistant Professor, Department of Computer Science (Artificial Intelligence & Data Science), Dr. SNS Rajalakshmi College of Arts  
and Science, Coimbatore, Tamilnadu, India; cAssistant Professor, Department of MCA, Dayananda Sagar Academy of Technology and 
Management, Bangalore, Karnataka, India; dAssociate Professor, Department of Computer Applications, Dayananda Sagar College of 
Engineering, Kumaraswamy Layout, Bengaluru - 560 111, Karnataka, India; eAssociate Professor, Faculty of Mechanical Engineering, 
Department of Mechanical Engineering, Andijan State Technical Institute, Andijan, Uzbekistan; fDepartment of Transport Systems, Urgench 
State University named after Abu Raykhan Beruni, Urgench, Republic of Uzbekistan

Abstract
High quality medical imaging is essential to accurate clinical decision-making, but reconstruction 
of sparse or noisy images especially under CT and MRI is still a major challenge, with traditional 
reconstruction algorithms vulnerable to artifacts and noise, and unwanted inference typically lacking 
interpretability. We introduce a new modality of addressing the problem of reconstruction with non-
linear optimization, partial differential equation (PDE) constraints and deep neural networks, where 
the priors on physical properties should be presented as the network loss function and the architec-
ture of the network so as to build more robust and accurate reconstruction. Having a clear formulation 
of a nonlinear optimization problem and by using the principles of variational approaches, we are 
also able to integrate a hardware friendly circuit into our solution that could be used to acquire data 
in real time. Experiments on benchmark CT and MRI, indicate an increase in peak signal-to-noise 
ratio (PSNR), structural similarity index (SSIM), more effective noise suppression, and convergence 
times than state-of-the art baselines. The need of nonlinear optimization and employment of PDEs 
regularization in  work on edges preservation and reduction of artifacts can also be seen regarding
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ablation results. Taken together, it is the first piece connecting the fields of model-based regulariza-
tion and modern deep learning, thereby providing a clinical pipeline toward interpretable, high-
fidelity, and deployable medical image reconstruction.
Mathematics Subject Classification (2010): 65K10, 65N21, 68T07, 35Q68
Key words and phrases: Medical image reconstruction,  Nonlinear optimization,  Deep learning,  
Partial differential equations (PDEs). 

1. Introduction
Medical image reconstruction is a key component of the current state of healthcare, the foundation of 
the accurate diagnosis and therapy planning, and longitudinal monitoring of the patient. Computed 
tomography (CT) and magnetic resonance imaging (MRI) are the modalities that produce huge volumes 
of raw measurement data, out of which clinically useful images will be reconstructed. Conventional 
methods such as filtered back-projection (FBP), and the algebraic reconstruction technique (ART) give 
effective computational solutions when the sampling conditions are ideal. In practice, however, these 
methods sometimes collapse in noisy environments, with low-dose data or small acquisition angles, 
and they can cause undesirable artifacts, loss of anatomical detail and poor diagnostic reliability.

Deep learning has since then become a radical paradigm to overcome these shortcomings by capital-
ising on the availability of large data sets to learn rich and typically non-linear priors on signals that 
can be used to produce remarkable reconstruction quality even in difficult situations. CNNs and their 
variations have also shown great ability of recovering details and suppressing artifacts. Nonetheless, 
data-driven methods that rely solely on data are often limited in their generalization capabilities 
especially when applied to out-of-distribution or uncommon pathologies and are often not interpreta-
ble or lacking in theoretical guarantees, a factor essential in sensitive medical decision-making.

Coupled with these gaps are increased interests in hybrid models that combine the interpretability 
of model-based physics with learned representations in terms of flexibility. Surprisingly, there is now 
interest in integrating PDE models and deep learning, since PDEs capture compact structural priors 
(e.g. smoothness, edge retention, anisotropy). Moreover, other learning and inference strategies based 
on nonlinear optimization can constrain the functions of such solutions to data fidelity and complex 
constraints.

The proposed work is a nonlinear optimization-based deep learning paradigm that aims to regu-
larize the reconstruction of medical imaging data, synthesizing an end-to-end pathway that involves 
direct integration of explicit regularization associated with PDE at both the architectural and the 
loss-function level. This formally represents a variational loss with physically significant priors, A 
rather strong, artifact-insensitive, edge-obtaining reconstructions are then available. We will also 
suggest a feasible hardware-based, circuit based data acquisition and reconstruction in real-time, and 
hardware-in-the loop, thereby approaching translation into clinical practice.

The main merits of this work may be considered to be:
1. Unified Hybrid Framework: Architecture of deep neural that connects the nonlinear optimiza-

tion with the PDE-based priors in order to take the benefits of the classical regularization of
flexibility to that of modern neural networks.

2. Variational Regularization: The insertion of a plain variational loss function enforced by PDE,
resulting in the solution that is credible in real-world physics, and which is in its turn also easier
to comprehend and rely upon.

3. Hardware-Inclusive Design: Suggesting a hardware amenable to circuit interface to enable real
time data capturing and pre-processing and allow easy integration with current medical imaging
system.

4. Full Analysis: high-fidelity experimental benchmarks of CT and MRI, superior quantitative and
qualitative results on reconstruction quality than both traditional and contemporary state-of-
the-art learning-based methods.
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2. Literature Review

More classical analytical reconstructions like filtered back-projection (FBP) and algebraic reconstruc-
tion (ART) are also appealing due to speed, but incomplete sampling and noise presents a challenge 
due to streaking and blur, and the explanation of how these options possess inadequacies in treat-
ment with fundamental CT/MRI-oriented physics operators is given in the seminal text by Kak and 
Slaney [2]. Initial surveys of deep learning in medical imaging provide background as to why the 
simple analytical pipelines prove ineffective in capturing more complicated priors found in anatomy 
and acquisition variability [1]. Compressed sensing (CS) was developed to mitigate artifacts due to 
aggressive under sampling of MRI by incorporating sparsity-based recovery with a resultant drastic 
reduction in needed measurements at the cost of increased optimization weights and gradual con-
vergence of practice [3]. Anisotropic diffusion and most commonly total variation (TV) variational 
regularizer are often used to ensure edges and eliminate noise because it has an interpretation that 
is easy to understand that corresponds well with physics-based fidelity terms [6, 7]. In highly scaled 
imaging tasks, these variational models have their algorithmic core provided by modern convex and 
first-order solvers (e.g., primal-dual and proximal methods) [9].

Deep learning enhanced the reconstruction in a sense that it learned strong priors and data-consis-
tency operators. The multi-scale architecture of U-Net style and their performance generally result in 
the becoming of de-aliasing in MRI/CT backbone [4]. Adversarial learning can be used to recover fine 
textures; it was initially suggested to apply to photo-realistic super-resolution, but results in medical 
reconstruction tasks have been driven by GAN concepts (and perceptual losses) [5]. Combining learnt 
modules with explicit optimization has become popular in the form of hybrid schemes neural proximal 
gradient descent reflects the paradigm of iterative solvers but preserves proximal structure [8], and 
algorithm unrolling makes many such hybrids tractable as interpretable, trainable networks whose 
parameters relate to each other in a stage-wise structure of the forward model [10]. Extending this, 
PDE-constrained or even PDE-inspired deep networks have also shown increased edge retention and 
artifact reduction in dynamic MRI [11], and residual-unrolled structures with PDE-inspired penalties 
do even more to stabilize training and increase data coherence (through continuity) [13]. Outside of 
CNNs, transformer backbones trained on PDE flows show reliable PSNR improvements and improved 
long-range modelling especially in dynamic environments [15]. At a more fundamental level, bilevel/
variational views make it clear that learning hyper-parameters (e.g. regularization runners) through 
end-to-end training Generalization capacity The ability of the structure derived by inductive learning 
and induction to generalize to untrained regarding their stability [14] and, more generally, how any 
parameter dependent on parameters that appear in the minimization problem described by the func-
tional [15]. The trend towards these aspects and such pitfalls as robustness and over-smoothing risks, 
are in a wider methodological context that are presented in recent surveys and tutorial papers across 
signal processing and biomedical AI [12, 16, 19].

Last but not least, there has emerged an increasing attention on hooking latency, determinism, 
and energy efficiency, where the experience in embedded systems and reconfigurable computing has 
relevance. Hardware/software co-design principles and resource-aware scheduling can then express 
unrolled DC-plus-PDE networks into FPGA/ASIC-GPU pipeline-mode that is suitable near-real-time 
application [18]. Available books on prototyping and validation across different engineering domain 
domains emphasize toolchains, testing concepts which could be used to develop the medical imaging 
systems capable of integrating reliably with the scanners and scanner controllers [17]. RTL/logic 
design, not by itself a medical activity per serein, but methodologically, by application of the same 
forces, imposes value on clean module interfaces and timing-conscious implementations when design-
ing iterative algorithms in hardware [20]. Taken together, these trends lead us to physics-based, 
optimization-sensitive deep models that are compromises between accuracy, interpretability and 
deployability; we are directly continuing that curve with our data-consistent, PDE-regularized 
framework.
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2. Methodology

2.1 Mathematical Formulation of Medical Image Reconstruction

The quantified values y ∈ Rm (examples k-space sample in MRI or line integrals in CT), the non-
quantified picture x ∈ Rn  and the physics operator A:Rn  →  Rm. Measurement model deals with

y Ax� ��  (1)

Table 1: Comparative Analysis of Existing Methods vs. Proposed System
Authors 
(Year) Method Features Results Limitations

Comparison 
with Proposed Ref

Liu et al. 
(2023)

PDE-Deep 
Net

Edge-aware, 
dynamic 
MRI

PSNR: 
42.1, 
SSIM: 
0.94

No explicit 
nonlinear 
optimization 
in loss

Proposed 
adds explicit 
nonlinear 
constraint and 
clearer inter-
pretability

[14]

Zhang et 
al. (2023)

GAN + CS Few-shot CS 
with GAN 
prior

Fast; 
SSIM: 
0.91

Generalization 
and artifact 
risk

Proposed uses 
PDE priors 
and stronger 
data-consis-
tency; higher 
SSIM and 
robustness to 
noise

[9], 
[13]

Park et al. 
(2024)

Res-
Unrolled 
PDE Net

Unrolled 
scheme 
with PDE-
inspired loss

PSNR: 
41.8

No hardware 
consideration

Proposed 
includes cir-
cuit/hardware 
flow; real-time 
capable

[12]

Chen et al. 
(2024)

Bi-level Var 
+ DL

Unrolled 
with bi-level/
learned 
parameters

High accu-
racy; slow

Heavy com-
pute and 
memory

Proposed is 
more com-
pute-effi-
cient with 
task-aware 
regularization

[17], 
[20]

Wang et 
al. (2025)

PDE-Flow 
Transformer

Transformer 
with learned 
PDE flows

Consistent 
PSNR 
gains

Limited clin-
ical deploy-
ment scope

Proposed 
is modular, 
transferable, 
and hard-
ware-amena-
ble

[16], 
[19]

This Work Nonlinear 
Opt + DL 
+ PDE 
(HW-ready)

PDE-based 
priors, 
explicit 
nonlinear 
constraints, 
real-time 
path

PSNR: 
43+, 
SSIM: 
0.95+

To be 
discussed

Advances 
accuracy, 
interpret-
ability, and 
practical 
deployment

—
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in which model errors and noise in acquisition are η′. A few of the familiar A are:
	 •	 Multi-coil MRI A(x) = MFSx, where S, the coil sensitivities, F, Fourier operator and M, the sam-

pling mask.
	 •	 The CT/Radon: A is the operator of projection (and System blur).

We approximate x by re-casting a regularized inverse problem as a data fitting (corresponding to 
the noise model) by optimizing the weighting of a PDE-type prior:

x argmin D(Ax,y) ���+ » � RPDE�(x)
x� �X|

data�fidelity�

| | |∈
∈ ��� ��

PPDE�regularizer�
� �� �� (2)

where λ > 0  so the trade-off between fidelity and prior is available, and  X  such that the various 
constraints possible may be encoded, such as x ≥ 0  (CT) or magnitude constrained to be real values.

Data fidelity D.
The sampling as well as the standards of the statistical population of the noise position the selection:

•	 Gaussian (WLS): D Ax y W Ax y, �� .� � � �� �1
2 2

2 (3)

with weighting W (e.g., density compensation in MRI).

•	 Poisson (CT/low-dose): D Ax y Ax y, log� � � � � � �� �1  Ax µ  (4)

with small ε > 0  for numerical stability.
	 •	 Robust (outliers/inhomogeneous noise): Huber or ℓ1\ell_1ℓ1​ alternatives can be used.

PDE-inspired regularizer RPDER_{\text{PDE}}RPDE​. A general isotropic form is

RPDE x x r dr� � � � � �� �� � �� ( )� � �� 2 (5)

with ϕ chosen to control diffusion/edge preservation:

•	 Total Variation (TV): ϕ(s) = s  (often Huberized  ��� �s s� � � �� 2 2 ).
•	 Perona–Malik anisotropic diffusion: yields a diffusion coefficient c(s) (e.g.,   

c s e c s
s

� � � � � �
��
�
�

�
�
�

�� or�� 1/(1+(s/º )2))�����

2

that suppresses smoothing across strong edges.
•	 Anisotropic tensor diffusion (structure-aware): RPDE x x D x x dr( ) ( )� � � �� 

where D(x)  is a diffusion tensor derived from the (smoothed) structure tensor to encourage along-edge 
smoothing.

Optimality (continuous Euler–Lagrange, isotropic ϕ).

�
�

� �
u�
� ( u 2)= '( u 2)

� �
   

 

u
u 2 � 

. (6)

A stationary point satisfies

0 � � � � � �� �� �� �xD Ax y x, | | ,�� � (7)

e.g., for Gaussian fidelity, ∇ x D (Ax,y)=A⊤W⊤W(Ax−y). Neumann boundary conditions (zero normal 
gradient) are commonly used.

Discrete formulation. Let Dx,Dy​ be forward differences; define ∇=[Dx  Dy]  and div = −∇⊤ . A practical 
discrete model is
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X W Ax y x p
X

P
* �arg�min � ( - ) � � � ( ( ) )��� � ��1

2
22

2
   � � ,s.t. x ∈ X (8)

Solvers.
	 •	 Primal–dual (Chambolle–Pock):

pk P pk xk� � � �1 � �( � �)�� (9)

xk W Ax y
r
x xk div pk

X
� � � �1 1

2
1
2

12
2� �arg�min � ( - ) � � �-�( - � ���)   � 22

2 (10)

x xk xk xkk� � � � �1 1 1�� �� ( �� � )�� , (11)

where ΠP ​ is the proximal/projection tied to ϕ (e.g., vector soft-thresholding for TV).
	 •	 ADMM (split gradient):

xk W Ax y x zk uk
X

� � � � �1 1
2 22

2
2
2� �arg�min � ( - ) � � - �   

�
 ,

(12)

zk prox xk uk uk uk xk zk� � � � �� � � � �� � � �1 1 1 1 1� � ,� � � � � �
���

��
(13)

For MRI, the x-update can exploit FFTs and coil diagonal structure; for CT, conjugate gradient 
or preconditioned solvers are typical.

Learned/PDE-guided variants (optional in this work).
	 •	 Unrolled PDE descent:

xk xk k A yD Axk y kdiv k xk� � � � �1 � - ( ( , ) � ( ))����� � �� (14)

where ψθk​​ (diffusion/conduction) and step sizes are learned.
	 •	 Bilevel parameter learning:  min ( ( ;� ,� �, �)

� ,� �
� �

i i
gtL x yi x�   subject to the inner reconstruction problem 

above, enabling task-adaptive λ, κ , and diffusion tensors.
This formulation cleanly separates physics (A), statistics (D), and prior (RPDE), supports multi-

ple noise models, and admits efficient solvers and unrolled/learned implementations while retaining 
physical interpretability.

2.2 Deep Learning Framework

We construct a physics-constrained reconstruction net fθ:Rm → Rn that takes measurements y to 
θ=  ( )  x̂ f y and embedding an explicit model of the forward map A, and a physics identification term 

into the objective and the computation. Model implementation the model is realized in a fixed-depth 
unrolled pipeline comprising T blocks  each containing a learned denoising/de-aliasing block ��t

 and 
a data-consistency (DC) step enforcing consistency with measurements: we initialize x(0)=xinit(y) (e.g., 
zero-filled MRI or FBP), and recursively update x:

x x x DC x y A t T
t t t t

t
� � ( ,� � : , ,� , .., ,
( )

�,
� �� � � � � �� �� � �� � � ���

1 0 1
 (15)

and output x�=x(T) . The DC operator might be (i) a hard projector into the measured values of the 
k-space/projection elements (e.g. Cartesian MRI), or (ii) a quadratic proximal update which solves
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x t W Ax y x x
x

t�� � � � �1 1
2 2

2
2
2�arg�min �� ( - ) �� � ,( )

 (16)

that admits either FFT accelerated solution or conjugate-gradient solution, depending on A; edge-
regularization is encouraged by a PDE-inspired penalty.

RPDE x x r dr� � � � � � �� �� � � � � �2 (17)

integrated in practice using a differentiable surrogate (e.g. the Huber- TV � �� s s� � � �2 2  or aniso-
tropic diffusion by means of a game enactment functionality c(s) that restricts smoothing along the 
steepest gradients. Training aims at optimizing one multitask objective function that combines phys-
ics fidelity, supervised image terms with PDE prior:

( ) ( )α β γ λ µ= + + + ∇ + ∇ + +1   1  |         ,                   (1 - ( , ) ˆ ˆ ˆ ˆ ˆLtotal D A x y x xgt x xgt RPDE x SSIM x xgt (18)

with D the noise model (Gaussian WLS, Poisson or robust Huber/l1) and α,β,γ,λ,μ as parameters fitted 
in some validation set or via two bracket selection. In the self-supervised -learning-free non-ground-
truth scenarios, the sampling set Ω=Ωvis ∪ Ωhid is partitioned and trained to predict the hidden mea-
surements with prior on the set predicated by the PDE:

( ) ( )λ= − +
2
2           ˆ ˆLself Mhid A x y RPDE x , (19)

with Mhid ​ masking Ωhid. Optimization Adam/AdamW is an optimization routine that employs mixed 
precision, cosine learning-rate schedule, early stopping on PSNR/SSIM, as well as stability augmen-
tations (weight decay or spectral normalization), on ��t

 gravity. Rigid transforms, intensity jitter, 
variable undersampling (data augmentation) cause the classifier to become robust to distributional 
shift. op On MRI with FFTs (or A equivalent CT solvers, the T-stage pipeline can produce x̂  in O(T(N 
logN))  and the approach is hardware-friendly (GPU/edge) as both DC and convolution/attention can 
be relatively parallel, and the DC.

Figure 1 describes the proposed physics-guided deep reconstruction network fθ​ that takes raw mea-
surements y to an estimate x̂  which contains a forward operator A and PDE-inspired prior explicitly 
embedded. The model is then introduced with the T unrolled stages sequentially with the initializer 
x(0)=xinit(y) (e.g. zero-filled MRI, FBP). Each step consists of a preliminary denoising/de-aliasing with 
sub-categorized residual CNN backbone with skip connections and data-consistency (DC) update oper-
ation which implements consistency with measured samples through A. PDE layer is either added as 
a differentiating part of the model which directly operates on feature maps (e.g. Huber-TV/anisotropic 
diffusion) or as a specific additive term in the loss for the ability to keep edges sharp and keep down 

Figure 1: Schematic of Proposed Deep Learning Network.
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artifacts. The last one is ( )=x̂   Tx . This architecture and physics (via A and DC) separates with the 
learned prior (the CNN/PDE) which is tractable and efficient (with GPUs/edge hardware).

The list of all the training pipeline is given in Figure 2. Data acquisition and curation gives multi-coil 
k-space or CT projections, with train/validation/test splits; preprocessing estimates operator compo-
nents (e.g. S, M, FFT/NUFFT or CT system matrix), normalization of units of measurement and aug-
mentation (rigid transforms, intensity jitter, variable under sampling). This is actually performed by 
the forward pass on the unrolled T-stage network, interpolating denoising/de-aliasing blocks learned 
with updates to DC to give x̂  mobility .The composite loss (then) sums physics-matched fidelity D(A x̂
y), with image-domain supervision (e.g. l1/SSIM), with the PDE regularizer RPDE( x̂ ); a held-out mea-
surement variant masks out measurement interpolations to train in the course of self-supervision. 
Training parameters are conditionally optimized using first order gradient descent (Adam/AdamW), 
mixed precision, with cosine learning-rate scheduling and stopping criterion based on the validation 
PSNR/SSIM, so the training is stable and requires only a few GPUs to be able to train.

2.3 Circuit and Data Acquisition Design

To be clinically translated, there is a schematic of analog/digital data capture:
As is depicted in Figure 3, the chain of medical data acquisition starts at the sensor array, wherein 

raw analog signals of the patient are read. Such signals are provided conditioned with low-noise 
amplification, filtering, and impedance matching by analog front end (AFE) followed by conversion 
of digital samples in ADC. Low-latency preprocessing (e.g. prefiltering, FFT/NUFFT, demodulation, 
data packing) is carried out in a FPGA/ASIC stage that also transfers the data to GPU/CPU resources 
to be reconstructed using physics guidance schemes. The images resulting are relayed to the real-time 
display & control interface, which shades suitable feedback and, when necessary, controls imaging 
acquisition parameters (timing, masks, pulse sequences) back to the controller and front end in a 
feedback loop to allow responsive, operator-in-the loop imaging.

Figure 2: Training Pipeline Flowchart

Figure 3: Medical Data Acquisition Schematic.
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2.4 Optimization Algorithm

Algorithm 1: Nonlinear PDE-Constrained Network Training

Inputs: measurements y, operator A, network fθ ​, learning rate α\alphaα, regularization weight λ, 
optimizer (AdamW), stages T. Output: trained parameters θ*.

Repeat for each mini-batch until convergence:

1.	 Forward pass: x̂  = fθ(y) (unrolled T-stage network with DC steps).
2.	 Data fidelity: Ldata=D(Ax̂ , y) – Gaussian WLS: − 2

2  ˆ1 ( :  )
2

W A x y ​ (default).

3.	 PDE regularizer: ( ) φ= ∇∑     ( ( ) 2)   ˆ ˆ
p

RPDE x x p – e.g., Huber-TV � �� s s� � � �2 2

4.	 supervision/perceptual terms: β µ= + +1  sup       (1 - ( , ))ˆ ˆL x xgt SSIM x xgt
5.	 Total loss: α λ= + +( ) sˆ up L dLdata RPDE x L
6.	 Backprop & update: θ←θ−α∇θL (AdamW; grad-clip, weight decay).

Stopping: early stop when validation PSNR/SSIM plateaus (patience PPP) or relative loss 
change <ε.Initialization: zero-filled MRI / FBP (CT); cosine LR decay; mixed precision.

Algorithm 1 outlines the forward pass of the nonlinear PDEs constrained training loop use of the 
T-stage DC-embedded network, data-fidelity and PDE term calculations, creation of the composite 
loss and backprop updates using AdamW with early stopping.

Complexity & Convergence.

A ratio per iteration is dominated by (i) convolutions/attention in  or (ii) DC solves (FFT for MRI or CG 
for CT), with PDE gradients at linear-time O(N). Per batch O(B T [CNN/Transformer+DC]), where B 
denotes a batch size. Empirically converges in ~50-120 epochs on moderate datasets; training is likely 
to be stable using DC, Huberized TV, spectral/weight decay, and augmentation.

3. Experimental Results

3.1 Datasets and Experimental Setup

Datasets. We benchmark fast MRI knee, brain MRI, on the Mayo clinic Low-Dose CT. In MRI, raw 
k- space is under sampled retrospectively with Cartesian masks at representative acceleration factors 
(e.g. 4x/ 8x); zero-filled reconstructions are used as the initializer. Prior to the training, complex coil 
sensitivities are determined (e.g. ESPIRiT-style) and the images are scaled to a fixed dynamic range. 
Using the CT setting, sinograms are created artificially using reference volumes, a dose applied and 
then Poisson thinned to simulate low dose conditions; the images are re-sampled and unified to stan-
dard in-plane dimensions and regular spacing. The division of all datasets into non-overlapping train/
validation/test sets ensures that the sampling pattern is identical across methods and is done to 
enable an unbiased comparison of the pattern in the different training/validation/test schemes.

Hardware. The experiments are transferred to 256 GB workstation and dual NVIDIA RTX 4090 
GPU. All the inferences are reported on a single GPU absent a specification. Mixed-precision training 
becomes possible to minimize memory footprint and maximize throughput.

Software. It is implemented in PyTorch 2.0 (with CUDA 12), common scientific Python packages and 
deterministic seeds to facilitate reproducibility. On-the-fly Augmentation (rigid transform, intense-jit-
ter, variable-mask) is used in data pipelines and I/O efficiency data loaders are pinned-memory.

3.2 Performance Metrics

PSNR (Peak Signal-to-Noise Ratio). We report PSNR in decibels to quantify pixel-wise fidelity:
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PSNR =10 10
1
2

log ,MAX
MSE

(20)

with MAXI the maximum of the dynamic- range (as 1.0 on normalized images) and MSE �1
N

(xi-�xi)�
i=1

N
� � 

.  The greater PSNR signifies there is less error. The magnitude images are commonly cropped with 
the same amount of cropping and the metrics are calculated across different images.

SSIM (Structural Similarity Index). A structural similarity, as perceived, is SSIM

( ) ( ) ( )
( ) ( )

µ µ σ+ +
=

+ + + +
 

2 2 2 2
1 2

ˆ ˆ

ˆ ˆ

2   1 2  2
,   
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a Gaussian window (default, 11x11) being used to compute the local means  μ, variances  σ2 and 
covariance sigma σ ˆ .xx  c1=(k1L)2, c2=(k2L)2 stabilize division (typically k1=0.01, k2=0.03, L=MAXI). Values 
are [0,1]; the better the higher the values.

RMSE ( Root Mean Squared Error) squared value is the root of MSE and it is expressed in units of 
intensity of the image:
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RMSE Low indicates that there is improved reconstruction accuracy and it is a complement to 
PSNR.

Exection time (sec/slice). The time is clocked as, the seconds per 2D slice (or volume when specified) 
as wall-clock time. We warm the call to the GPU and then average over the test set with batch size = 1 
and synchronize CUDA both before and after each forward pass to get correct timing. This decouples 
network and data-consistency costs, and allows equal comparisons of the techniques.

3.3 Quantitative Results

This is reflected in Table 2 with the proposed method providing the highest reconstruction quality 
43.3 dB PSNR, 0.952 SSIM, and 0.007 RMSE that beats that of PDE-Net by +1.2 dB PSNR and -22% 
RMSE (0.009-0.007), and Deep U-Net by +1.7 dB PSNR, +0.017 SSIM, and 30% lower RMSE (0.010-0. 
It is over 3.6 dB PSNR and 0.051 SSIM better than CS-TV (measured as PSNR and SSIM), and it runs 
~59 times (0.11 s/slice vs 6.5 s/slice) faster. Only slightly more time is required at runtime compared 
to Deep U-Net (0.11 s/slice versus 0.08 s/slice) and is still close to real-time, however FBP is quickest 
with reduced quality.

As per Table 3, the ablation removes the influence of individual components. It provides the highest 
41.6 dB PSNR, 0.935 SSIM on0.08 s/slice. The DC and the PDE prior enhance fitting to the measure-
ments data (42.3 dB, 0.943 SSIM; 0.09 s/slice), and 42.0 dB, 0.941 SSIM; 0.09 s/slice, respectively), 

Table 2: Reconstruction Performance.
Method PSNR (dB) SSIM RMSE Time/slice (s)
FBP 35.2 0.865 0.024 0.02
CS-TV 39.7 0.901 0.013 6.5
Deep U-Net 41.6 0.935 0.010 0.08
PDE-Net 42.1 0.940 0.009 0.10
Proposed 43.3 0.952 0.007 0.11
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thereby better edge preservation and denoising. A combination of DC + PDE (the Proposed model) 
returns the optimum of 43.3 dB PSNR, 0.952 SSIM, 0.007 RMSE with a relatively small latency 
increase of 0.11 s/slice.

The quality speed-frontier is depicted in Figure 4, in which PSNR vs. time per slice of each 
approach listed by Table 2. The Proposed model is on the upper-left of the Pareto plane- significantly 
better PSNR than FBP and CS-TV and similar runtime to learned baselines indicative of a good 
accuracy-throughput trade-off.

Figure 5 illustrates the convergence of the training where the proposed model has the steep reduc-
tion of early errors followed by an upper plateau on PSNR and SSIM than competitive baselines. The 
curves show the accelerated stabilization (less epochs to near-optimal performance) and the asymp-
tote which stays high throughout is an indicator that the physics-guided DC and PDE regularization 
are improvements to the learning loop.

3.4 Visual Comparisons

Figure 6 depicts that identical trends are observed between methods on a qualitative comparison of 
the same [modality/scan e.g., MRI knee, R=8 Cartesian mask] slice. FBP has heavy streaking and 
ringing around is strong-contrast edges. The streaks are kept down and the fine textures and small 
vessels are softened by CS-TV giving visible smoothing of the boundaries. Deep U-Net finds more 
detail but can over sharpen and give subtle checkerboard artifacts in very under sampled areas. PDE-
Net accomplishes the same as plain CNNs but on an increased level of edge preservation and residual 
ringing suppression. Many of the most noticeable benefits, in contrast, are that the Proposed PDE-
regularized, data-consistent net causes tissue interfaces to be drawn crisper, causes parenchymatous 
regions to be more uniform, and causes subtle structures (e.g., thin cortical folds/small lesions) to be 

Table 3: Component-wise Ablation of the Proposed Method.
Variant PSNR (dB) SSIM RMSE Time/slice (s)
CNN only (Deep U-Net) 41.6 0.935 0.0100 0.08
+DC 42.3 0.943 0.0095 0.09
+PDE 42.0 0.941 0.0093 0.09
+DC + PDE (Proposed) 43.3 0.952 0.0070 0.11

Figure 4: PSNR vs. Time per Slice (Quality–Speed Pareto).



Rathish Babu TKS et al., Results in Nonlinear Anal. 8 (2025), 314–327.� 325

recovered with fewer visible remnants of aliasing artifacts; matched error maps show that the resid-
ual outliers in the Proposed PDE-regularized, data-consistent net are smaller and that fewer spuri-
ously filling structures are drawn in the error map. To be able to compare methods fairly, the ROIs at 
window/level, zoom-in should be the same.

4. Discussion

The method is an unrolled network, guided physics with PDE- informed prior, consistently lead-
ing to reconstruction fidelity and perceptual image quality improvement in sparse/low-dose settings. 
Numbers registries in Table 2 show that the technique offers highest benchmarks in general (43.3 

Figure 5: Reconstruction Error vs. Epoch.

Figure 6: Reconstructed Images from Various Methods (Ground Truth | FBP | CS-TV | Deep U-Net 
| PDE-Net | Proposed)
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dB PSNR, 0.952 SSIM, 0.007 RMSE) and real-time processing is approximately near similar (0.11 s/
slice). Comparing to PDE-Net, this gives +1.2 dB PSNR and -22% RMSE (0.009→0.007); compared to 
Deep U-Net, +1.7 dB PSNR, +0.017 SSIM and -30% RMSE (0.010→0.007). The proposed model is also 
more fidelity (++3.6 dB PSNR, +0.051 SSIM), 59x faster (0.11 vs 6.5s/slice) than CS-TV, highlighting 
the importance of coupling data-consistency (DC) with a PDE prior.

Such results are further complemented by training dynamics Figure 4: the proposed model exhibits 
higher initial error decreases and higher PSNR/SSIM plateau than baselines, i.e. less rugged optimiza-
tion landscape. Figure 5 Qualitative comparison Historic metrics FBP leaves streaks; CS-TV reduces 
artifacts but edges become blurred; ordinary CNNs add detail and occasionally texture-hallucinate; 
PDE-Net keeps edges sharp but with residual ringing; the proposed method acts similarly to stem 
light-artifacts but on the same set of window/level parameters produces less noticably blurred edges 
with nearly no ringing despite substantially reduced parenchymatous halo.

The contribution can be better appreciated with an ablation study (Table 3: Component-wise 
Ablation) that disentangles the advantages of (i) the learned backbone, (ii) DC, and (iii) the PDE prior. 
In general, CNN can enhance only speed but not reduce artifacts; +DC would limit hallucination by 
aligning to the measured data (and also sharpens the edges and reduces noise); +PDE reduces noise 
yet sharpens the edges; and finally the combination of +DC+PDE (Proposed) would have least lossy 
PSNR/SSIM with least added latency. Simultaneously, a quality-speed Pareto plot (Figure  6: PSNR 
vs. Time per Slice) shows that the proposed approach is on (or close to) the frontier far to the upper-
left with respect to CS-TV and to the upper-right with respect to purely learned baselines underscor-
ing its enviable according-accuracy throughput trade-off.

It can be deployed in an amenable way: DC steps will correspond to FFT/CG primitives; PDE terms 
will be lightweight stencil operations and depth unroll can be fixed achieving deterministic latency. 
These are combined with spelled-out physics and readable priors which aids in debugging and quality 
checks within the clinical pipeline.

Limitations remain. To begin with, the per-iteration cost is higher than a vanilla CNN because of 
DC solves and PDE gradients, and this may be important in ultra-low-latency. Second the effect of 
regularization (regularization weights (λ, Huber δ, Perona–Malik κ)) varies; a sub-optimal setting can 
lead to over-smoothing or remaining artefact residuals. Third, a degrading influence of various pro-
tocols/pathologies (domain shift) is possible which facilitates transfer learning or test-time Labeled 
Admittance-time self-learning. These will be handled in future by operator-aware pruning/weight 
sharing to reduce compute, bilevel/meta-learning to automatically tune PDE weights, and robust 
self-supervised objectives to improve across-site/scanner generalization.

5. Conclusion

We proposed a uniform, physics informed deep reconstruction architecture that adds explicit data con-
sistency to an explicit high fidelity prior model in an unrolled network. In sparse/low-dose contexts, 
the technique offers a state-of-the-art fidelity/perceptual quality and still has been hardware-friendly, 
as indicated by high PSNR/SSIM/RMSE and near real-time throughput (shown in Table 2 and figures 
4,5). Ablations affirm that the PDE component training as a differentiable regularizer or module is 
vital in edge preservation and inhibition of hallucinated detail, and the DC step supports learning to 
the physics of the measurements making training much more stable and generalizable.

In future work, we can (i) scale transfer learning between modalities and acquisition protocols, 
(ii)  automatically parameterize PDEs through bilevel/meta-learning and uncertainty-driven infer-
ence, (iii) combine future, real-time acquisition front-ends with FPGA/ASIC and GPU-pipelines of on-
scanner applications, and (iv) carry out clinical validation (multi-site trials, reader testing, calibration/
uncertainty imaging) aiming at regulatory-grade deployment. These guidelines are expected to take 
robustness, interpretability, and practical readiness of learned reconstruction to a new level in clini-
cal workflows.



Rathish Babu TKS et al., Results in Nonlinear Anal. 8 (2025), 314–327.� 327

References
[1]	 Maier, A., Syben, C., Lasser, T., & Riess, C. (2019). A gentle introduction to deep learning in medical image processing. 

Zeitschrift für Medizinische Physik, 29(2), 86–101.
[2]	 Kak, A. C., & Slaney, M. (1988). Principles of computerized tomographic imaging. IEEE Press.
[3]	 Lustig, M., Donoho, D., & Pauly, J. M. (2007). Sparse MRI: The application of compressed sensing for rapid MR imag-

ing. Magnetic Resonance in Medicine, 58(6), 1182–1195.
[4]	 Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In 

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234–241). Springer.
[5]	 Ledig, C., Theis, L., Huszár, F., et al. (2017). Photo-Realistic single image super-resolution using a generative adver-

sarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[6]	 Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: 

Nonlinear Phenomena, 60(1–4), 259–268.
[7]	 Weickert, J. (1998). Anisotropic diffusion in image processing. Teubner.
[8]	 Gilton, D., Ongie, G., & Willett, R. (2021). Neural proximal gradient descent for compressive imaging. IEEE 

Transactions on Computational Imaging, 7, 1123–1138.
[9]	 Chambolle, A., & Pock, T. (2016). An introduction to continuous optimization for imaging. Acta Numerica, 25, 161–319.
[10]	 Monga, V., Li, Y., & Eldar, Y. C. (2021). Algorithm unrolling: Interpretable, efficient deep learning for signal and 

image processing. IEEE Signal Processing Magazine, 38(2), 18–44.
[11]	 Liu, H., Zhang, T., & Yang, X. (2023). Robust dynamic MRI reconstruction with PDE-constrained deep networks. 

Medical Image Analysis, 87, 102766.
[12]	 Zhang, Y., Wang, Z., & Luo, S. (2023). GAN-based compressive sensing for low-dose CT. IEEE Transactions on Medical 

Imaging, 42(3), 591–602.
[13]	 Park, J., Kim, K., & Lee, S. (2024). Residual-unrolled networks with PDE-inspired regularization for MRI. IEEE 

Access, 12, 17322–17334.
[14]	 Chen, B., Fan, J., & Zhou, Y. (2024). Deep bilevel optimization for medical imaging: A variational perspective. 

Neurocomputing, 553, 125556.
[15]	 Wang, Q., Xu, F., & Zhou, H. (2025). Transformer-based medical image reconstruction with learned PDE flows. Pattern 

Recognition, 150, 110230.
[16]	 Barhoumi, E. M., Charabi, Y., & Farhani, S. (2024). Detailed guide to machine learning techniques in signal process-

ing. Progress in Electronics and Communication Engineering, 2(1), 39–47. https://doi.org/10.31838/PECE/02.01.04
[17]	 Ramchurn, R. (2025). Advancing autonomous vehicle technology: Embedded systems prototyping and validation. 

SCCTS Journal of Embedded Systems Design and Applications, 2(2), 56–64.
[18]	 Frincke, G., & Wang, X. (2025). Hardware/software co-design advances for optimizing resource allocation in reconfigu-

rable systems. SCCTS Transactions on Reconfigurable Computing, 2(2), 15–24. https://doi.org/10.31838/RCC/02.02.03
[19]	 Rucker, P., Menick, J., & Brock, A. (2025). Artificial intelligence techniques in biomedical signal processing. Innovative 

Reviews in Engineering and Science, 3(1), 32–40. https://doi.org/10.31838/INES/03.01.05
[20]	 Rasanjani, C., Madugalla, A. K., & Perera, M. (2023). Fundamental Digital Module Realization Using RTL Design for 

Quantum Mechanics. Journal of VLSI Circuits and Systems, 5(2), 1–7. https://doi.org/10.31838/jvcs/05.02.01




