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Abstract

High quality medical imaging is essential to accurate clinical decision-making, but reconstruction
of sparse or noisy images especially under CT and MRI is still a major challenge, with traditional
reconstruction algorithms vulnerable to artifacts and noise, and unwanted inference typically lacking
interpretability. We introduce a new modality of addressing the problem of reconstruction with non-
linear optimization, partial differential equation (PDE) constraints and deep neural networks, where
the priors on physical properties should be presented as the network loss function and the architec-
ture of the network so as to build more robust and accurate reconstruction. Having a clear formulation
of a nonlinear optimization problem and by using the principles of variational approaches, we are
also able to integrate a hardware friendly circuit into our solution that could be used to acquire data
in real time. Experiments on benchmark CT and MRI, indicate an increase in peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM), more effective noise suppression, and convergence
times than state-of-the art baselines. The need of nonlinear optimization and employment of PDEs
regularization in work on edges preservation and reduction of artifacts can also be seen regarding
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ablation results. Taken together, it is the first piece connecting the fields of model-based regulariza-
tion and modern deep learning, thereby providing a clinical pipeline toward interpretable, high-
fidelity, and deployable medical image reconstruction.

Mathematics Subject Classification (2010): 656K10, 656N21, 68T07, 35Q68
Key words and phrases: Medical image reconstruction, Nonlinear optimization, Deep learning,
Partial differential equations (PDEs).

1. Introduction

Medical image reconstruction is a key component of the current state of healthcare, the foundation of
the accurate diagnosis and therapy planning, and longitudinal monitoring of the patient. Computed
tomography (CT) and magnetic resonance imaging (MRI) are the modalities that produce huge volumes
of raw measurement data, out of which clinically useful images will be reconstructed. Conventional
methods such as filtered back-projection (FBP), and the algebraic reconstruction technique (ART) give
effective computational solutions when the sampling conditions are ideal. In practice, however, these
methods sometimes collapse in noisy environments, with low-dose data or small acquisition angles,
and they can cause undesirable artifacts, loss of anatomical detail and poor diagnostic reliability.

Deep learning has since then become a radical paradigm to overcome these shortcomings by capital-
ising on the availability of large data sets to learn rich and typically non-linear priors on signals that
can be used to produce remarkable reconstruction quality even in difficult situations. CNNs and their
variations have also shown great ability of recovering details and suppressing artifacts. Nonetheless,
data-driven methods that rely solely on data are often limited in their generalization capabilities
especially when applied to out-of-distribution or uncommon pathologies and are often not interpreta-
ble or lacking in theoretical guarantees, a factor essential in sensitive medical decision-making.

Coupled with these gaps are increased interests in hybrid models that combine the interpretability
of model-based physics with learned representations in terms of flexibility. Surprisingly, there is now
interest in integrating PDE models and deep learning, since PDEs capture compact structural priors
(e.g. smoothness, edge retention, anisotropy). Moreover, other learning and inference strategies based
on nonlinear optimization can constrain the functions of such solutions to data fidelity and complex
constraints.

The proposed work is a nonlinear optimization-based deep learning paradigm that aims to regu-
larize the reconstruction of medical imaging data, synthesizing an end-to-end pathway that involves
direct integration of explicit regularization associated with PDE at both the architectural and the
loss-function level. This formally represents a variational loss with physically significant priors, A
rather strong, artifact-insensitive, edge-obtaining reconstructions are then available. We will also
suggest a feasible hardware-based, circuit based data acquisition and reconstruction in real-time, and
hardware-in-the loop, thereby approaching translation into clinical practice.

The main merits of this work may be considered to be:

1. Unified Hybrid Framework: Architecture of deep neural that connects the nonlinear optimiza-
tion with the PDE-based priors in order to take the benefits of the classical regularization of
flexibility to that of modern neural networks.

2. Variational Regularization: The insertion of a plain variational loss function enforced by PDE,
resulting in the solution that is credible in real-world physics, and which is in its turn also easier
to comprehend and rely upon.

3. Hardware-Inclusive Design: Suggesting a hardware amenable to circuit interface to enable real
time data capturing and pre-processing and allow easy integration with current medical imaging
system.

4. Full Analysis: high-fidelity experimental benchmarks of CT and MRI, superior quantitative and
qualitative results on reconstruction quality than both traditional and contemporary state-of-
the-art learning-based methods.
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2. Literature Review

More classical analytical reconstructions like filtered back-projection (FBP) and algebraic reconstruc-
tion (ART) are also appealing due to speed, but incomplete sampling and noise presents a challenge
due to streaking and blur, and the explanation of how these options possess inadequacies in treat-
ment with fundamental CT/MRI-oriented physics operators is given in the seminal text by Kak and
Slaney [2]. Initial surveys of deep learning in medical imaging provide background as to why the
simple analytical pipelines prove ineffective in capturing more complicated priors found in anatomy
and acquisition variability [1]. Compressed sensing (CS) was developed to mitigate artifacts due to
aggressive under sampling of MRI by incorporating sparsity-based recovery with a resultant drastic
reduction in needed measurements at the cost of increased optimization weights and gradual con-
vergence of practice [3]. Anisotropic diffusion and most commonly total variation (TV) variational
regularizer are often used to ensure edges and eliminate noise because it has an interpretation that
1s easy to understand that corresponds well with physics-based fidelity terms [6, 7]. In highly scaled
imaging tasks, these variational models have their algorithmic core provided by modern convex and
first-order solvers (e.g., primal-dual and proximal methods) [9].

Deep learning enhanced the reconstruction in a sense that it learned strong priors and data-consis-
tency operators. The multi-scale architecture of U-Net style and their performance generally result in
the becoming of de-aliasing in MRI/CT backbone [4]. Adversarial learning can be used to recover fine
textures; it was initially suggested to apply to photo-realistic super-resolution, but results in medical
reconstruction tasks have been driven by GAN concepts (and perceptual losses) [5]. Combining learnt
modules with explicit optimization has become popular in the form of hybrid schemes neural proximal
gradient descent reflects the paradigm of iterative solvers but preserves proximal structure [8], and
algorithm unrolling makes many such hybrids tractable as interpretable, trainable networks whose
parameters relate to each other in a stage-wise structure of the forward model [10]. Extending this,
PDE-constrained or even PDE-inspired deep networks have also shown increased edge retention and
artifact reduction in dynamic MRI [11], and residual-unrolled structures with PDE-inspired penalties
do even more to stabilize training and increase data coherence (through continuity) [13]. Outside of
CNNs, transformer backbones trained on PDE flows show reliable PSNR improvements and improved
long-range modelling especially in dynamic environments [15]. At a more fundamental level, bilevel/
variational views make it clear that learning hyper-parameters (e.g. regularization runners) through
end-to-end training Generalization capacity The ability of the structure derived by inductive learning
and induction to generalize to untrained regarding their stability [14] and, more generally, how any
parameter dependent on parameters that appear in the minimization problem described by the func-
tional [15]. The trend towards these aspects and such pitfalls as robustness and over-smoothing risks,
are in a wider methodological context that are presented in recent surveys and tutorial papers across
signal processing and biomedical Al [12, 16, 19].

Last but not least, there has emerged an increasing attention on hooking latency, determinism,
and energy efficiency, where the experience in embedded systems and reconfigurable computing has
relevance. Hardware/software co-design principles and resource-aware scheduling can then express
unrolled DC-plus-PDE networks into FPGA/ASIC-GPU pipeline-mode that is suitable near-real-time
application [18]. Available books on prototyping and validation across different engineering domain
domains emphasize toolchains, testing concepts which could be used to develop the medical imaging
systems capable of integrating reliably with the scanners and scanner controllers [17]. RTL/logic
design, not by itself a medical activity per serein, but methodologically, by application of the same
forces, imposes value on clean module interfaces and timing-conscious implementations when design-
ing iterative algorithms in hardware [20]. Taken together, these trends lead us to physics-based,
optimization-sensitive deep models that are compromises between accuracy, interpretability and
deployability; we are directly continuing that curve with our data-consistent, PDE-regularized
framework.



Rathish Babu TKS et al., Results in Nonlinear Anal. 8 (2025), 314-327. 317
Table 1: Comparative Analysis of Existing Methods vs. Proposed System
Authors Comparison
(Year) Method Features Results Limitations with Proposed Ref
Liu et al. PDE-Deep Edge-aware, PSNR: No explicit Proposed [14]
(2023) Net dynamic 42.1, nonlinear adds explicit
MRI SSIM: optimization nonlinear
0.94 in loss constraint and
clearer inter-
pretability
Zhang et GAN + CS Few-shot CS  Fast; Generalization Proposed uses [9],
al. (2023) with GAN SSIM: and artifact PDE priors [13]
prior 0.91 risk and stronger
data-consis-
tency; higher
SSIM and
robustness to
noise
Park et al. Res- Unrolled PSNR: No hardware Proposed [12]
(2024) Unrolled scheme 41.8 consideration includes cir-
PDE Net with PDE- cuit’/hardware
inspired loss flow; real-time
capable
Chen et al. Bi-level Var  Unrolled High accu- Heavy com- Proposed is [17],
(2024) + DL with bi-level/ racy; slow pute and more com- [20]
learned memory pute-effi-
parameters cient with
task-aware
regularization
Wang et PDE-Flow Transformer Consistent Limited clin- Proposed [16],
al. (2025) Transformer with learned PSNR ical deploy- 1s modular, [19]
PDE flows gains ment scope transferable,
and hard-
ware-amena-
ble
This Work  Nonlinear PDE-based PSNR: To be Advances —
Opt + DL priors, 43+, discussed accuracy,
+ PDE explicit SSIM: interpret-
(HW-ready) nonlinear 0.95+ ability, and
constraints, practical
real-time deployment
path

2. Methodology

2.1 Mathematical Formulation of Medical Image Reconstruction

The quantified values y € R™ (examples k-space sample in MRI or line integrals in CT), the non-
quantified picture x € R* and the physics operator A:R* — R™ Measurement model deals with

y=Ax+n

1)
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in which model errors and noise in acquisition are n'. A few of the familiar A are:

e Multi-coil MRI A(x) = MFSx, where S, the coil sensitivities, F, Fourier operator and M, the sam-
pling mask.
e The CT/Radon: A is the operator of projection (and System blur).

We approximate x by re-casting a regularized inverse problem as a data fitting (corresponding to
the noise model) by optimizing the weighting of a PDE-type prior:

xx |elargmin D(Ax,y) +p RPDE (x)
xe X| Y—on— S

data fidelity PDE regularizer

(2)
where A > 0 so the trade-off between fidelity and prior is available, and X such that the various
constraints possible may be encoded, such as x>0 (CT) or magnitude constrained to be real values.

Data fidelity D.
The sampling as well as the standards of the statistical population of the noise position the selection:

. 1
o Gaussian (WLS): D(Ax,y) = §W(Ax - y)z . 3)
with weighting W (e.g., density compensation in MRI).
o Poisson (CT/low-dose): D(Ax,y) =1T (Ax) -yT log(Ax + p) (4)

with small ¢ > 0 for numerical stability.
¢ Robust (outliers/inhomogeneous noise): Huber or £1\ell_1{1 alternatives can be used.

PDE-inspired regularizer RPDER_{\text{PDE}|RPDE. A general isotropic form is
RPDE (x)=1Q@ (Vx(r),)dr (5)
with ¢ chosen to control diffusion/edge preservation:

e Total Variation (TV): ¢(s) =s (often Huberized ¢6 (s) =/S2+02).
e Perona—Malik anisotropic  diffusion: yields a  diffusion coefficient c¢(s) (e.g.,

S

c(s) = e{") or c(s) =1/(1+(s/°)2)) that suppresses smoothing across strong edges.
e Anisotropic tensor diffusion (structure-aware): RPDE(x) = |QVx T D(x)Vxdr
where D(x) is a diffusion tensor derived from the (smoothed) structure tensor to encourage along-edge

smoothing.
Optimality (continuous Euler-Lagrange, isotropic o).

0 u

— 2)=¢' 2)———.

u ¢Cllull2)=¢'Cllul| )||u||2+e (6)
A stationary point satisfies

O:VxD(Ax,y)|+|/IVo(y/(Vx)), (7

e.g., for Gaussian fidelity, V x D (Ax,y)=A"TWTW(Ax—y). Neumann boundary conditions (zero normal
gradient) are commonly used.

Discrete formulation. Let DX,Dy be forward differences; define V=[Dx Dy] and div=-VT. A practical
discrete model is
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X*e argm}}n%” W(Ax - y) ||§+/1;¢(|| (Vx)p||2) ,s.t.x € X ®)

Solvers.

¢ Primal-dual (Chambolle—Pock):

pk+1=TIP (pk+0cVx") 9)
! 9 1 . 9
xk+1= argm)}ngll W(Ax-y) ||, +2—|| x - (xk-tdivpk+1 )|} (10)
r
X' = xk+1 6(xk+1 —xk) (11)

where I, is the proximal/projection tied to ¢ (e.g., vector soft-thresholding for TV).
e ADMM (split gradient):

xk+1= argm}}n%llW(Ax-y)llf +§||Vx-zk+uk||22 (12)

)

zk +1=prox , (Vxk+1+uk),uk+1=uk+Vxk+1-zk+1

ﬁ (13)

For MRI, the x-update can exploit FFTs and coil diagonal structure; for CT, conjugate gradient
or preconditioned solvers are typical.
Learned/PDE-guided variants (optional in this work).

e Unrolled PDE descent:
xk +1=xk-th(A T VyD(Axk,y) + Ak divyOk(Vxk)) (14)
where wy,,_(diffusion/conduction) and step sizes are learned.

e Bilevel parameter learning: n;iln Z L(x * (yi;0,4 ,xf ) subject to the inner reconstruction problem

above, enabling task-adaptive A, x , and diffusion tensors.
This formulation cleanly separates physics (A), statistics (D), and prior (R,,;), supports multi-
ple noise models, and admits efficient solvers and unrolled/learned implementations while retaining
physical interpretability.

2.2 Deep Learning Framework

We construct a physics-constrained reconstruction net f:R™—R" that takes measurements y to
x =f0(y) and embedding an explicit model of the forward map A, and a physics identification term
into the objective and the computation. Model implementation the model is realized in a fixed-depth
unrolled pipeline comprising T blocks each containing a learned denoising/de-aliasing block ®, and
a data-consistency (DC) step enforcing consistency with measurements: we initialize X(O)—let(y) (e.g.,
zero-filled MRI or FBP), and recursively update x:

;(t)z(bet)(x(t) (t+1) _ DC( 7). A),tzo, ........ T -1, (15)

and output )A(=X(T). The DC operator might be (i) a hard projector into the measured values of the
k-space/projection elements (e.g. Cartesian MRI), or (i1) a quadratic proximal update which solves



Rathish Babu TKS et al., Results in Nonlinear Anal. 8 (2025), 314-327. 320

x (t + 1) = argmxin% W(Ax - y)i + x —32(2”2, (16)

that admits either FFT accelerated solution or conjugate-gradient solution, depending on A; edge-
regularization is encouraged by a PDE-inspired penalty.

RPDE(x)=IQ¢(Vx(r)2)dr (17)

integrated in practice using a differentiable surrogate (e.g. the Huber- TV ¢, (s) =4/82+ 62 or aniso-
tropic diffusion by means of a game enactment functionality c(s) that restricts smoothing along the
steepest gradients. Training aims at optimizing one multitask objective function that combines phys-
ics fidelity, supervised image terms with PDE prior:

| Ltotal = a D(AZ% ,y)+ % +xgt, +y V& +Vxgt | +ARPDE(%)+ u(1- SSIM(%,xgt) (18)

with D the noise model (Gaussian WLS, Poisson or robust Huber/11) and a,8,y,A,n as parameters fitted
in some validation set or via two bracket selection. In the self-supervised -learning-free non-ground-
truth scenarios, the sampling set Q=Q . U Q. is partitioned and trained to predict the hidden mea-
surements with prior on the set predicated by the PDE:

Lself =Mhid(A% ~ y): +2 RPDE(%) (19)

with M, , masking Q.. Optimization Adam/AdamW is an optimization routine that employs mixed
precision, cosine learning-rate schedule, early stopping on PSNR/SSIM, as well as stability augmen-
tations (weight decay or spectral normalization), on @, gravity. Rigid transforms, intensity jitter,
variable undersampling (data augmentation) cause the ‘classifier to become robust to distributional
shift. op On MRI with FFTs (or A equivalent CT solvers, the T-stage pipeline can produce x in O(T(N
logN)) and the approach is hardware-friendly (GPU/edge) as both DC and convolution/attention can
be relatively parallel, and the DC.

Figure 1 describes the proposed physics-guided deep reconstruction network f, that takes raw mea-
surements y to an estimate x which contains a forward operator A and PDE-inspired prior explicitly
embedded. The model is then introduced with the T unrolled stages sequentially with the initializer
x(0)=x, . (y) (e.g. zero-filled MRI, FBP). Each step consists of a preliminary denoising/de-aliasing with
sub-categorized residual CNN backbone with skip connections and data-consistency (DC) update oper-
ation which implements consistency with measured samples through A. PDE layer is either added as
a differentiating part of the model which directly operates on feature maps (e.g. Huber-TV/anisotropic
diffusion) or as a specific additive term in the loss for the ability to keep edges sharp and keep down

CNN backbone

Residual

PDE H

Layer

Y

Input raw measurement

Figure 1: Schematic of Proposed Deep Learning Network.
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1. Data N " o/ 3.Forward | | 5.Optimization
Acquisition 4 RISprosEseing Pass (Network) (gradient descent)

Figure 2: Training Pipeline Flowchart

artifacts. The last one is £ =x'"). This architecture and physics (via A and DC) separates with the
learned prior (the CNN/PDE) which is tractable and efficient (with GPUs/edge hardware).

The list of all the training pipeline is given in Figure 2. Data acquisition and curation gives multi-coil
k-space or CT projections, with train/validation/test splits; preprocessing estimates operator compo-
nents (e.g. S, M, FFT/NUFFT or CT system matrix), normalization of units of measurement and aug-
mentation (rigid transforms, intensity jitter, variable under sampling). This is actually performed by
the forward pass on the unrolled T-stage network, interpolating denoising/de-aliasing blocks learned
with updates to DC to give £ mobility .The composite loss (then) sums physics-matched fidelity D(Ax
y), with image-domain supervision (e.g. 11/SSIM), with the PDE regularizer R, .(¥); a held-out mea-
surement variant masks out measurement interpolations to train in the course of self-supervision.
Training parameters are conditionally optimized using first order gradient descent (Adam/AdamW),
mixed precision, with cosine learning-rate scheduling and stopping criterion based on the validation
PSNR/SSIM, so the training is stable and requires only a few GPUs to be able to train.

2.8 Circuit and Data Acquisition Design

To be clinically translated, there is a schematic of analog/digital data capture:

As is depicted in Figure 3, the chain of medical data acquisition starts at the sensor array, wherein
raw analog signals of the patient are read. Such signals are provided conditioned with low-noise
amplification, filtering, and impedance matching by analog front end (AFE) followed by conversion
of digital samples in ADC. Low-latency preprocessing (e.g. prefiltering, FFT/NUFFT, demodulation,
data packing) is carried out in a FPGA/ASIC stage that also transfers the data to GPU/CPU resources
to be reconstructed using physics guidance schemes. The images resulting are relayed to the real-time
display & control interface, which shades suitable feedback and, when necessary, controls imaging
acquisition parameters (timing, masks, pulse sequences) back to the controller and front end in a
feedback loop to allow responsive, operator-in-the loop imaging.

Real-time
Feedback

el L
7 ~

v

] Inference
Data Transer

——

Figure 3: Medical Data Acquisition Schematic.
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2.4 Optimization Algorithm

Algorithm 1: Nonlinear PDE-Constrained Network Training

Inputs: measurements y, operator A, network f,, learning rate a\alphaa, regularization weight A,
optimizer (AdamW), stages T. Output: trained parameters 6"

Repeat for each mini-batch until convergence:
Forward pass: x =f(y) (unrolled T-stage network with DC steps).

Data fidelity: L dam:D(Afc, y) — Gaussian WLS: %W(A X — y)g (default).
PDE regularizer: RPDE(J%) = Zp¢(|| (Vx)pll2) —e.g., Huber-TV ¢, (s) =+/s2+62

supervision/perceptual terms:Lsup = fx + xgt, +u(1-SSIM(x,xgt))

Total loss: L = adLdata + ARPDE(x) + L sup
Backprop & update: 0—6—-aV L (AdamW; grad-clip, weight decay).

SO R o~

Stopping: early stop when validation PSNR/SSIM plateaus (patience PPP) or relative loss
change <e.Initialization: zero-filled MRI / FBP (CT); cosine LR decay; mixed precision.

Algorithm 1 outlines the forward pass of the nonlinear PDEs constrained training loop use of the
T-stage DC-embedded network, data-fidelity and PDE term calculations, creation of the composite
loss and backprop updates using AdamW with early stopping.

Complexity & Convergence.

A ratio per iteration is dominated by (i) convolutions/attention in or (i1) DC solves (FFT for MRI or CG
for CT), with PDE gradients at linear-time O(N). Per batch O(BT [CNN/Transformer+DC]), where B
denotes a batch size. Empirically converges in ~50-120 epochs on moderate datasets; training is likely
to be stable using DC, Huberized TV, spectral/weight decay, and augmentation.

3. Experimental Results
3.1 Datasets and Experimental Setup

Datasets. We benchmark fast MRI knee, brain MRI, on the Mayo clinic Low-Dose CT. In MRI, raw
k- space is under sampled retrospectively with Cartesian masks at representative acceleration factors
(e.g. 4x/ 8x); zero-filled reconstructions are used as the initializer. Prior to the training, complex coil
sensitivities are determined (e.g. ESPIRiT-style) and the images are scaled to a fixed dynamic range.
Using the CT setting, sinograms are created artificially using reference volumes, a dose applied and
then Poisson thinned to simulate low dose conditions; the images are re-sampled and unified to stan-
dard in-plane dimensions and regular spacing. The division of all datasets into non-overlapping train/
validation/test sets ensures that the sampling pattern is identical across methods and is done to
enable an unbiased comparison of the pattern in the different training/validation/test schemes.

Hardware. The experiments are transferred to 256 GB workstation and dual NVIDIA RTX 4090
GPU. All the inferences are reported on a single GPU absent a specification. Mixed-precision training
becomes possible to minimize memory footprint and maximize throughput.

Software. It is implemented in PyTorch 2.0 (with CUDA 12), common scientific Python packages and
deterministic seeds to facilitate reproducibility. On-the-fly Augmentation (rigid transform, intense-jit-
ter, variable-mask) is used in data pipelines and I/O efficiency data loaders are pinned-memory.

3.2 Performance Metrics

PSNR (Peak Signal-to-Noise Ratio). We report PSNR in decibels to quantify pixel-wise fidelity:
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2

PSNR =10log,, % (20)

. . . . . 1S, .~
with MAXI the maximum of the dynamic- range (as 1.0 onnormalized images) and MSE = N Z(XI-XI)
i=1
. The greater PSNR signifies there is less error. The magnitude images are commonly cropped with
the same amount of cropping and the metrics are calculated across different images.
SSIM (Structural Similarity Index). A structural similarity, as perceived, is SSIM

(2,%“%3 +cl)(20'me +c2)
(12 +1%+¢,)(62 +67+c,)

X

SSIM(x,aE) =

a Gaussian window (default, 11x11) being used to compute the local means p, variances o?and
covariance sigma o,;. ¢,=(k,L)? c,=(k,L)*stabilize division (typically k =0.01, k,=0.03, L=MAX)). Values
are [0,1]; the better the higher the values.

RMSE ( Root Mean Squared Error) squared value is the root of MSE and it is expressed in units of
intensity of the image:

RMSE (x,% ) = \/%Z(xi %) (22)

i=1

RMSE Low indicates that there is improved reconstruction accuracy and it is a complement to
PSNR.

Exection time (sec/slice). The time is clocked as, the seconds per 2D slice (or volume when specified)
as wall-clock time. We warm the call to the GPU and then average over the test set with batch size =1
and synchronize CUDA both before and after each forward pass to get correct timing. This decouples
network and data-consistency costs, and allows equal comparisons of the techniques.

3.8 Quantitative Results

This is reflected in Table 2 with the proposed method providing the highest reconstruction quality
43.3 dB PSNR, 0.952 SSIM, and 0.007 RMSE that beats that of PDE-Net by +1.2 dB PSNR and -22%
RMSE (0.009-0.007), and Deep U-Net by +1.7 dB PSNR, +0.017 SSIM, and 30% lower RMSE (0.010-0.
Itis over 3.6 dB PSNR and 0.051 SSIM better than CS-TV (measured as PSNR and SSIM), and it runs
~59 times (0.11 s/slice vs 6.5 s/slice) faster. Only slightly more time is required at runtime compared
to Deep U-Net (0.11 s/slice versus 0.08 s/slice) and is still close to real-time, however FBP is quickest
with reduced quality.

As per Table 3, the ablation removes the influence of individual components. It provides the highest
41.6 dB PSNR, 0.935 SSIM 0on0.08 s/slice. The DC and the PDE prior enhance fitting to the measure-
ments data (42.3 dB, 0.943 SSIM; 0.09 s/slice), and 42.0 dB, 0.941 SSIM; 0.09 s/slice, respectively),

Table 2: Reconstruction Performance.

Method PSNR (dB) SSIM RMSE Time/slice (s)
FBP 35.2 0.865 0.024 0.02
CS-TV 39.7 0.901 0.013 6.5
Deep U-Net 41.6 0.935 0.010 0.08
PDE-Net 42.1 0.940 0.009 0.10

Proposed 43.3 0.952 0.007 0.11

(21)
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Table 3: Component-wise Ablation of the Proposed Method.

Variant PSNR (dB) SSIM RMSE Time/slice (s)
CNN only (Deep U-Net) 41.6 0.935 0.0100 0.08
+DC 42.3 0.943 0.0095 0.09
+PDE 42.0 0.941 0.0093 0.09
+DC + PDE (Proposed) 43.3 0.952 0.0070 0.11

thereby better edge preservation and denoising. A combination of DC + PDE (the Proposed model)
returns the optimum of 43.3 dB PSNR, 0.952 SSIM, 0.007 RMSE with a relatively small latency
increase of 0.11 s/slice.

The quality speed-frontier is depicted in Figure 4, in which PSNR vs. time per slice of each
approach listed by Table 2. The Proposed model is on the upper-left of the Pareto plane- significantly
better PSNR than FBP and CS-TV and similar runtime to learned baselines indicative of a good
accuracy-throughput trade-off.

Figure 5 illustrates the convergence of the training where the proposed model has the steep reduc-
tion of early errors followed by an upper plateau on PSNR and SSIM than competitive baselines. The
curves show the accelerated stabilization (less epochs to near-optimal performance) and the asymp-
tote which stays high throughout is an indicator that the physics-guided DC and PDE regularization
are improvements to the learning loop.

3.4 Visual Comparisons

Figure 6 depicts that identical trends are observed between methods on a qualitative comparison of
the same [modality/scan e.g., MRI knee, R=8 Cartesian mask] slice. FBP has heavy streaking and
ringing around is strong-contrast edges. The streaks are kept down and the fine textures and small
vessels are softened by CS-TV giving visible smoothing of the boundaries. Deep U-Net finds more
detail but can over sharpen and give subtle checkerboard artifacts in very under sampled areas. PDE-
Net accomplishes the same as plain CNNs but on an increased level of edge preservation and residual
ringing suppression. Many of the most noticeable benefits, in contrast, are that the Proposed PDE-
regularized, data-consistent net causes tissue interfaces to be drawn crisper, causes parenchymatous
regions to be more uniform, and causes subtle structures (e.g., thin cortical folds/small lesions) to be
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Figure 4: PSNR vs. Time per Slice (Quality—Speed Pareto).
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Figure 6: Reconstructed Images from Various Methods (Ground Truth | FBP | CS-TV | Deep U-Net
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recovered with fewer visible remnants of aliasing artifacts; matched error maps show that the resid-
ual outliers in the Proposed PDE-regularized, data-consistent net are smaller and that fewer spuri-
ously filling structures are drawn in the error map. To be able to compare methods fairly, the ROIs at
window/level, zoom-in should be the same.

4. Discussion

The method is an unrolled network, guided physics with PDE- informed prior, consistently lead-
ing to reconstruction fidelity and perceptual image quality improvement in sparse/low-dose settings.
Numbers registries in Table 2 show that the technique offers highest benchmarks in general (43.3
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dB PSNR, 0.952 SSIM, 0.007 RMSE) and real-time processing is approximately near similar (0.11 s/
slice). Comparing to PDE-Net, this gives +1.2 dB PSNR and -22% RMSE (0.009—0.007); compared to
Deep U-Net, +1.7 dB PSNR, +0.017 SSIM and -30% RMSE (0.010—0.007). The proposed model is also
more fidelity (++3.6 dB PSNR, +0.051 SSIM), 59x faster (0.11 vs 6.5s/slice) than CS-TV, highlighting
the importance of coupling data-consistency (DC) with a PDE prior.

Such results are further complemented by training dynamics Figure 4: the proposed model exhibits
higher initial error decreases and higher PSNR/SSIM plateau than baselines, i.e. less rugged optimiza-
tion landscape. Figure 5 Qualitative comparison Historic metrics FBP leaves streaks; CS-TV reduces
artifacts but edges become blurred; ordinary CNNs add detail and occasionally texture-hallucinate;
PDE-Net keeps edges sharp but with residual ringing; the proposed method acts similarly to stem
light-artifacts but on the same set of window/level parameters produces less noticably blurred edges
with nearly no ringing despite substantially reduced parenchymatous halo.

The contribution can be better appreciated with an ablation study (Table 3: Component-wise
Ablation) that disentangles the advantages of (i) the learned backbone, (i1) DC, and (ii1) the PDE prior.
In general, CNN can enhance only speed but not reduce artifacts; +DC would limit hallucination by
aligning to the measured data (and also sharpens the edges and reduces noise); +PDE reduces noise
yet sharpens the edges; and finally the combination of +DC+PDE (Proposed) would have least lossy
PSNR/SSIM with least added latency. Simultaneously, a quality-speed Pareto plot (Figure 6: PSNR
vs. Time per Slice) shows that the proposed approach is on (or close to) the frontier far to the upper-
left with respect to CS-TV and to the upper-right with respect to purely learned baselines underscor-
ing its enviable according-accuracy throughput trade-off.

It can be deployed in an amenable way: DC steps will correspond to FFT/CG primitives; PDE terms
will be lightweight stencil operations and depth unroll can be fixed achieving deterministic latency.
These are combined with spelled-out physics and readable priors which aids in debugging and quality
checks within the clinical pipeline.

Limitations remain. To begin with, the per-iteration cost is higher than a vanilla CNN because of
DC solves and PDE gradients, and this may be important in ultra-low-latency. Second the effect of
regularization (regularization weights (A, Huber 6, Perona—Malik x)) varies; a sub-optimal setting can
lead to over-smoothing or remaining artefact residuals. Third, a degrading influence of various pro-
tocols/pathologies (domain shift) is possible which facilitates transfer learning or test-time Labeled
Admittance-time self-learning. These will be handled in future by operator-aware pruning/weight
sharing to reduce compute, bilevel/meta-learning to automatically tune PDE weights, and robust
self-supervised objectives to improve across-site/scanner generalization.

5. Conclusion

We proposed a uniform, physics informed deep reconstruction architecture that adds explicit data con-
sistency to an explicit high fidelity prior model in an unrolled network. In sparse/low-dose contexts,
the technique offers a state-of-the-art fidelity/perceptual quality and still has been hardware-friendly,
as indicated by high PSNR/SSIM/RMSE and near real-time throughput (shown in Table 2 and figures
4,5). Ablations affirm that the PDE component training as a differentiable regularizer or module is
vital in edge preservation and inhibition of hallucinated detail, and the DC step supports learning to
the physics of the measurements making training much more stable and generalizable.

In future work, we can (i) scale transfer learning between modalities and acquisition protocols,
(i) automatically parameterize PDEs through bilevel/meta-learning and uncertainty-driven infer-
ence, (i11) combine future, real-time acquisition front-ends with FPGA/ASIC and GPU-pipelines of on-
scanner applications, and (iv) carry out clinical validation (multi-site trials, reader testing, calibration/
uncertainty imaging) aiming at regulatory-grade deployment. These guidelines are expected to take
robustness, interpretability, and practical readiness of learned reconstruction to a new level in clini-
cal workflows.
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