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Abstract
It is also the aim of the paper to introduce new fixed-point results in the context of fuzzy modular 
metric spaces in connection to non-expansive maps and how they can be applied to the stability of 
neural operators. We find an analytical integration of the fuzzy set theory into the nonlinear oper-
ator analysis by generalizing classical frameworks of fixed points by the use of modular functional 
and the triangular norms. The suggested solution provides generalized convergence characteristics 
able to address uncertainty and nonlinearity, which are the most serious problems in contemporary 
data-driven systems. To evaluate the proposed method as a practical implementation we research the 
dynamics of training Deep Operator Networks (DeepONets) where the fuzzy modular organization 
guarantees stability throughout iterative learning. Stability in terms of contraction is established 
and the scheme numerically convergent when subjected to fuzzy constraints. The results not only 
reinforce the theoretical context of the analysis of fixed-point in fuzzy environments; it also provides 
sound design philosophy in constructing strong and robust neural-operator architectures.
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1. Introduction

Neural operators including Deep Operator Networks (DeepONets) and Fourier neural operators have 
recently shown to be a strong tool to learn mappings between infinite-dimensional Banach spaces. 
They are extensions of classical deep learning that aim at functional data representations and can be 
applied, e.g. to scientific computing, partial differential equation solvers, and model-based prediction 
systems. As successful as this has been empirically, an important challenge remains i.e., the problem 
of stability and convergence of training procedures especially in the presence of uncertainty/noisy 
environments.

Fixed point theory has traditionally played a role as a rigorous methodology to analyze iterative 
procedure as well as ensuring convergence in deterministic settings. Classical theorems, such as 
the contraction principle of Banach, have been widely used in control theory, in numerical analysis 
and in optimization. Their direct application to contemporary neural operator schemes is however 
restricted especially where the systems relate to fuzziness or even ambiguity in data, parameters or 
even structure.

The paper focuses on that limitation by generalizing fixed point theory to fuzzy modular metric 
spaces. These spaces generalize the metric structures conventionally because they include the trian-
gular norms and modular functionals making it possible to model uncertainty in a mathematically 
coherent fashion. With us the following contributions were made:

• Establishing some new fixed-point theorems with fuzzy modular metric spaces in mind aiming at 
a more general form of the stability situations.

• Concentrating on the non-expansive mappings, which in general occur in neural networks when-
ever updating the weights of the network, and in iterative optimization.

• Using the theoretical approach to the dynamics of neural trainer, specifically, DeepONets, and 
demonstrating their convergence in simulation.

Figure 1 shows a conceptual difference between classical result of fixed-point theorems and the 
needs of stability analysis to neural operators under fuzzy conditions. On the left , precise classical 
fixed-point theories (e.g., Banach contractions) exist in metric and other exact environments, and do 
not have natural robustness to uncertainty. Neural operator training on the right is update on the 
basis of data and is often determined by fuzziness, approximation and noise. The artery of the chart 
shows the fuzzy modular metric structure as put forward as an intersection to the classical theory of 
a fuzzy logic and a modular control, so as to require convergence as well as stability in the learning 
dynamics.

Figure 1: Conceptual diagram highlighting the gap between classical fixed-point results and the 
stability analysis of neural operators under fuzzy conditions.
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1.1 Literature Review and Comparison

Many classical theory has been worked out to study convergence and stability of iterative schemes. 
These principles such as Banach contractions to fuzzy metric studies have defined the theory of fixed 
points. They are however ineffective when scaled to systems where the phenomenon is uncertain, 
nonlinear and where learning architectures are on a framework of the operators themselves such as 
in the case of neural operator networks.

Banach Contraction Principle

Banach contraction mapping theorem is one of the most famous in classical fixed-point theory; it 
ensures the existence and uniqueness of a fixed point under strict contraction conditions in complete 
metric spaces. In spite of its beauty and practicality, the theory is not prepared to deal with envi-
ronments endowed with fuzziness or to address non-expansive mappings which often arise in neural 
network weight updates [1, 2].

Fuzzy Metric Fixed Point Theorems

It was the first principle of extensions to fixed point theory in fuzzy metric spaces was made to handle 
partial uncertainty and imprecise measures of distances. These such as [3 ,15] also prove existence 
results using fuzzy t-norms, although they tend to stick to more usual fuzzy metric developments and 
are not easily extendable to high-dimensional or operator-valued systems.

Operator-Theoretic Neural Models

Operator-based neural learning has seen a boom with the introduction of the DeepONets, Fourier 
Neural Operators and Graph Kernel Operators. These schemes are mostly successful in approximat-
ing mappings between infinite-dimensional spaces of functions [4,14], though convergence analysis 
does not come with formal theoretical guarantees, only with empirical tests.

Conversely, these shortcomings are overcome in the framework presented in this paper as follows:

• The presentation of a new type of fixed-point theorems defined in fuzzy modular metric spaces, 
that is a union of the modular property (control on the norm growth) and fuzzy treatment of 
uncertainty.

• Being direct about non-expansive mappings, generalizations over contractions and widely uti-
lized in deep neural networks dynamics of parameter updates.

• Giving stringent limitations of convergence that fits within the fuzzy and nonlinear nature of 
contemporary neural operators.

There are supporting indications in the recent development. For example:

• Work on fuzzy operators of contraction in modular spaces was studied in [5, 13] with a faster 
convergence of the nonlinear distances.

• In [6] a framework of analyzing the stability of neurons under uncertainty in the metrics was 
proposed, further supporting the utility of fuzzy-aware stability checks.

• Dynamics (only fuzzy informational) of regression over operator-valued targets with hybrid 
fuzzy-informational control were studied in [7,16], which confirmed the relevance of this approach 
regarding control problems.

In addition, further recent work has also developed this stream of work:

• Fixed-point results in [8], fixed-point results of ψ--contractions in modular fuzzy spaces are pro-
posed thus providing connections with stability theory in learning.
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• Operator network convergence in conjunction with fuzzy noise models has been examined in [9] 
in which simple instances of fuzziness have been shown to tame overfitting.

• Generalized alpha- psi contractive mapping with the application to dynamics on numerical learn-
ing was presented in [10].

• A modular fuzzy control schemes computational analysis on adaptive AI systems is provided in 
[11].

• In [12], the influence of triangular norms on composition of convergence speed and nonlinearity 
of the system has been mentioned.

2. Mathematical Modeling and Problem Formulation

2.1 Preliminaries

Consider a non-empty set X, and ρ:X×X→[0,∞) a modular, that is, a generalization of a metric, satisfy-
ing specific convexity and symmetry requirements. Let T:X→X be a non- expansive mapping :

Á� Tx Ty �Á x y x y� �X, , , ,� � � � � � � (1)

A t-norm is a binary operation ∗:[0,1]×[0,1]→[0,1], which is continuous, associative, commutative, 
and monotonic with identity 1, usually applied to model conjunction in fuzzy logic. The fuzzy metric 
M:X×X×(0,∞)→[0,1]  induced by the modular is given by:

M x y t �, ,� � � sup {s ∈ [0,1] ∣ ρ(x,y) ≤ t ⋅ s}. (2)
In this, M(x,y, t) indicates the measure of the closeness of elements x and y in fuzzy modular sense 

with parameter t.

2.2 Problem Statement

Assume that we are given a complete fuzzy modular metric space (X,M,∗) , we want to show that 
non-expansive mappings T:X→X  have a fixed point under some generalized contractive condition.

2.2.1 Theorem 1 (Fixed Point Theorem)

Consider a complete fuzzy modular metric pair (X,M,∗) with non-expansive self-mapping T:X→X    . 
Then there is one fixed point of T at least; i.e. there is an x∗ ∈ X with T(x*) = x*.

Table 1: Comparison Between Existing and Proposed Methods.
Feature Banach Fixed Point Fuzzy Metric Fixed Point Proposed (Fuzzy Modular)
Handles 
fuzziness

Not designed to 
accommodate fuzzy 
environments

Capable of handling 
uncertainty through fuzzy 
metrics

Fully integrates fuzziness 
using modular and fuzzy 
components

Supports 
non-expansive 
mappings

Limited to strictly 
contractive 
mappings

Partially supports non- 
expansive cases under 
constraints

Fully supports general 
non-expansive mappings 
under modular fuzzy 
settings

Modular 
flexibility

Does not incorporate 
modular functionals

Lacks modular integration Explicitly models modular 
control, offering additional 
analytical power

Applied to 
neural opera-
tor stability

Not applicable to 
modern operator 
learning models

Not directly applicable to 
neural operator dynamics

Tailored for analyzing the 
stability of neural operator 
architectures
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Sketch of Proof:

• Let {xn} ⊂ X be an (iterative) sequence defined by setting:

xn+1=T(xn),n� �0,with�x0� �X.�� � (3)

• Prove that the sequence {xn} is a Cauchy sequence in (X,M, ∗ ) with the fuzzy modular metric and 
the triangular inequality as well as the non-expansiveness of T.

• By the completeness of the fuzzy modular metric space, one can arrive at the conclusion that a 
limit point x∗ ∈ X .

• At last, differentiate that x∗  is a fixed point of T; this is, T(x∗) = x∗, by taking limits to each side of 
the iteration.

Algorithm 1: Fuzzy Iterative Scheme for Fixed Point Approximation
Input: Initial point x0 ∈ X, tolerance ε > 0
Repeat:
    x_next = T(x_current)
Until ρ(x_next, x_current) < ε
Return x_next

This algorithm repeatedly uses the operator T, until the modular difference between successive 
iterates is below some small tolerance epsilon, at which point convergence is attained.

The fixed-point iteration loop as shown by the figure 2 is depicted under the condition of fuzzy mod-
ular with the pattern of input selection, contraction estimation, and convergence tracking.

2.3 Detailed Mathematical Calculations and Simulation

This part makes the mathematical formalization of the mechanisms applied in our fixed-point study, 
especially on the fuzzy modular metric spaces and convergence trend of non-expansive mappings.

2.3.1. Modular Function Definition:

Assume that we have a modular: ρ:X×X→[0,∞) defined as:

Á x y x y �
� � x y

,� � � �
� �
 

 

p

p1
 for p>1, (4)

in this ∥⋅∥ is a norm on X. This perform naturally proceeds distances into segment [ 0,1), elevating 
uniformity with fuzziness.

Figure 2: Block diagram of fuzzy modular metric system with non-expansive mapping T.
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2.3.2. Fuzzy Metric Induced by the Modular:

The corresponding fuzzy measure M:X×X×(0,∞)→[0,1]  is the following:
The corresponding fuzzy metric M:X×X×(0,∞)→[0,1]  is defined as:

M x y t � �, ,� � � sup {s∈[0,1]  |  ρ(x,y) ≤ t⋅s},  (5)
that is used to capture the degree of proximity between x and y under the modular ρ and under a 

scaling constant t.

2.3.3. Generalized Fuzzy Contractive Condition:

Take T:X→X  be a self-mapping. We suppose there is a comparison function ϕ ∈ Φ, i.e.

• The set of all continuous non-decreasing functions  ϕ:[0,∞)→[0,∞) such that ϕ(t) < t  holds for any 
t, t>0 is denoted by Φ.

After that, mapping T meets the contractive condition:

Á Tx,Ty � �� �(Á(x,y)),� x,y� �X� � � � � � . (6)

This generalization generalizes classical contractions to the fuzzy modular contexts allowing a 
larger range of iterative phenomena.

2.3.4. Detailed Convergence Proof:

Given the initial point x0 ∈ X a sequence {xn} can be determined as follows:

xn+1=T(xn), n ≥ 0. (7)
With the contractive property of  T we have:

Á(xn+1,xn)� � (Á�(xn,xn-1)) � 2(Á(xn-1,xn-2))� � 0� � � � � � . (8)

It is given that since ϕn(t)→0 as n→∞ then:

lim Á(xn+1,xn)=0
n��  (9)

Therefore, {xn}  is a Cauchy sequence in fuzzy modular space ( X,M, *). Since the space is complete 
there is x∗ ∈ X so that:

limxn�=�x*.����
n��  (10)

A continuity of T implies T(x∗)=x∗ and this shows that x∗ is a fixed point.
Figure 3 Flowchart of initialization, fuzzy contraction evaluation, Cauchy condition check and con-

vergence to a fixed point.
The graph, as depicted in the Figure 4, proves to be exponentially convergent with the modular 

distances and this phenomenon is a visual demonstration of the rate of decay as caused by the con-
tractive mapping.

3. Computational Methodology / Simulation Framework

In order to determine the practical usefulness of the proposed fuzzy modular fixed-point theorems, we 
develop a simulation platform in MATLAB which approximates the iterative convergence of a neural 
operator (DeepONet in particular) when perturbed by fuzzy modular constraints.
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Figure 3: Flowchart of Iterative Convergence in Fuzzy Modular Metric Space.

Figure 4: Plot of ρ(xn,xn−1) versus Iteration Index.
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3.1 Fuzzy Modular Setup

The simulation environment is characterized in accordance to the following fuzzy settings:

• Modular Function ρ(x,y) is given by :

Á x y x y �
� � x y

,� � � �
� �
 

 

p

p1
 , Where p= 2 (11)

• Triangular Norm (t-norm), Product norm , s∗t = s⋅t .
• Mapping T: Denotes a single epoch of the weight update operation in DeepONet, as a non-expan-

sive self-map T:X→X.

3.2 MATLAB Code Snippet

The fuzzy fixed-point iteration of modular is done in the following MATLAB representation:
function x_star = fuzzy_fp(T, x0, tol)
    % T: Function handle for the mapping
    % x0: Initial guess
    % tol: Convergence threshold
    p = 2;                      % Exponent for modular definition
    x_prev = x0;
    while true
        x_next = T(x_prev);
        rho = norm(x_next - x_prev)^p / (1 + norm(x_next - x_prev)^p);
        if rho < tol
            break;
        end
        x_prev = x_next;
    end
    x_star = x_next;
end
The implementation is an approximation of the fixed point of a fuzzy-modular non-expansive oper-

ator by computing successive iterates and terminating when the modular difference ρ(xn+1,xn) is less 
than a user defined tolerance ε.

3.3 Simulation Setup and Parameters

Table 2 describes how the fuzzy fixed-point iteration applied on a stability of neural operator was 
simulated. The first one is selected as a random vector in the Rd space with an aim of being general 
under various initial conditions. The modular exponent p= 2 gives equal footing between sensitivity 
and numerical stability. The convergence level is defined by the parameter ε=10−4 which is reasonably 
based on the required practical accuracy and the highest number of iterations (100) is determined by 
the limitation of the computational expenses without weakening convergence assurance.

Table 2: Simulation Parameters for Fuzzy Iteration.
Parameter Value
Initial point Random vector ∈Rd 
Exponent p 2
Tolerance ε 10−410^{-4}10−4
Max Iterations 100
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This is an arrangement facilitating comparable convergence behavior over many runs and it is 
common scale with neural operator training systems.

Figure 5 shows the simulation procedure in analyzing the stability of neural operators with fuzzy 
limits of modularity constraint. The flow diagram starts at initialization (of the stochastic parame-
ters, the initial input vector, and the operator T, which corresponds to a neural update (e.g. DeepONet 
weight evolution). Each step is a computing of the fuzzy modular distance, ρ(xn+1,xn),  and then test of 
convergence. In the case that this distance is less than the threshold ε, the loop ends and provides the 
stable fixed point. Otherwise, the looping process is repeated. Such an organized loop will make the 
dynamics of neural operator stable under fuzzy control.

4. Experimental Setup / Simulation Circuit

Although the main verification of this paper is done using MATLAB based computational simula-
tions, we also suggest a conceptual analog hardware model that would carry out fuzzy modular fixed 
point iterations. This can become a guide to future neuromorphic computer applications where real 
time learning and low power operation is the main focus.

4.1 Analog Realization Concept

Analog representation of fuzzy modular fixed-point system takes advantage of well-understood circuit 
components to simulate and repeat learning and convergence phenomena in hardware. There are the 
following components included in the architecture:

• Op-Amps (Operation Amplifiers): Utilized in various operations (e.g. in performing differen-
tial operations (e.g. x-y)) and to form the closed negative feedback loop necessary in conversion 
control.

• Nonlinear Resistors or Diode-Transistor Networks: Such items are performed to simulate the 
nonlinear modular:

Á x y x y �
� � x y

,� � � �
� �
 

 

p

p1
 ,  p > 1 (12)

Nonlinearity approximates the imprecision with the distance computation, and permits the analog 
approximation of fuzzy modular metrics.

Figure 5: Flowchart of Neural Operator Stability Loop with Fuzzy Convergence Test.
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• Analog Multipliers and Integrators: To compute  x y �− p, and to scale these signals to appropri-
ate desired magnitudes; Cumulative error dynamics and related mechanisms: adopted to sup-
port the Cauchy sequence construction.

• Threshold Comparator Units: these observe the convergence process by comparing the current 
modular distance of two consecutive points, i.e. ρ(xn+1,xn) to a specified tolerance epsilon. When 
divergence has been eliminated (ρ < ε), the comparator indicates loop termination or stability flag 
set.

Figure 6 shows a block-based circuit design of fuzzy modular fixed-point system. The signal flow 
is summarized in the diagram with the starting point being the block of differential computations 
(realized through op-amps), and the next block is the nonlinear transformation (realized through the 
modules function), and the final block is the convergence controller (threshold comparator). Every 
module is an implementation of a step in iterative algorithm mentioned in Section 3.3. The feedback 
is provided on analog path, so there is an opportunity to follow up and update, just like fuzzy conver-
gence behavior in an analog hardware.

4.2 Potential Applications

The conceptual analogy model provided in this paper provides a number of opportunities to utilize 
fuzzy modular fixed-point systems within hardware-oriented realms. They find application especially 
where a low latency, real-time-decision making or resource-constrained computation is necessary.

4.2.1. Real-Time Fuzzy Control Systems

Robotics, spacecraft guidance and smart grid stabilization, which exist under uncertainty, are types 
of control systems where expected latency or quantization noise can occur in traditional digital con-
trollers. Our analog fuzzy modular circuit would track convergence behavior in real time continu-
ously, giving quick corrective signals with no need of high-speed digital processing. Fault tolerance 
and robustness is enhanced by the capability to program in the fuzziness directly into the hardware.

4.2.2. Edge-Based Neuromorphic Chips

Low-power computing We have edge devices, wearable sensors, IoT modules, and mobile health sys-
tems, which require low-power computing platforms that are able to local learning or inference. The 
possibility to implement the fuzzy modular logic into the neuromorphic chips allows:

• Light-weight convergence monitoring in local learning,
• Non-expansive learning updates implemented in an energy efficient way,
• Less of cloud processing or communication required.

Figure 6: Schematic of Fuzzy Operator Stability Modeled via Analog Components.
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This has a particularly good prospect on real-time model adaptation on privacy-related or connec-
tion-challenged contexts.

4.2.3. Hardware-Accelerated Operator Solvers

A big number of scientific and engineering problems boil down to the solution of parametric operators 
(e.g., PDEs, ODEs, and integral equations). The neural operators (such as DeepONet) are able to 
estimate mappings of this kind in a data-driven way. Training or online adaptation can be faster, by 
embedding fuzzy fixed-point dynamics directly in to the analog coprocessors:

• Updates with analog multipliers of matrices and vectors as well as with integrators proceed 
effectively,

• Convergence is achieved in hardware-in-the-loop systems, because of modular feedback,
• Facilitates introduction of fuzzy boundary condition treatment in real time simulators.

Although the actual practice of making a complete hardware model is not within the particulars 
of the research, the presented schematic provided in Figure 4 will serve as the blue plan. This is the 
basis of future work in extrapolating the convergence of principles of the fuzzy modular spaces into 
tape-out-ready silicon designs or SPICE verified circuit simulations and takes the fuzzy mathematical 
theory into the domain of embedded designs and neuromorphic hardware.

5. Results and Discussion

As an efficient measure of the suggested fuzzy modular fixed-point technique, we performed MATLAB 
experiments based on a simplified DeepONet training loop. The rule of updates was formulated in the 
form of non-expansive operator T and fuzzy modular measure was used to trace convergence. This 
section will show the quantitative and visual results of the simulation and after that, we will elabo-
rate the meaning of the results.

5.1 Convergence Performance

To check how fast and reproducibly the system can reach a steady fixed point we calculated, at differ-
ent iteration steps, the modular distance between consecutive positions ρ(xn+1,xn). Table 3 allows us to 
observe that the initial value of the error in the algorithm (0.258) is rather large and is successively 
decreased to less than 0.01 (the value of the convergence threshold ε=0.01) after the 12th iteration. A 
stability flag is established to Yes in the event that modular distance is under this value.

The above findings prove the fuzzy modular model to be capable of reasonable convergence over a 
reasonably small number of iterations. The presented behavior complies with the principles of con-
traction the theoretical formulation suggests in Section 2.

5.2 Visual Analysis

Analysis of convergence behaviour and output stability in terms of graphical means was discussed 
too.

Table 3: Convergence Results for Fuzzy Fixed-Point Iteration.
Iteration Number Modular Distance ρ(xn+1,xn) Stability Achieved
1 0.258 No
5 0.031 No
12 0.008 Yes

Note: Steady state occurs when the ρ(xn+1,xn) < ε=0.01.
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This diagram provided in Figure 7 shows reversed exponential decline in modular distance between 
ρ(xn+1,xn) as iterations pass. The convergence pattern is exponential like in nature and this is common 
in fixed point processes under generalized contractive mappings.

5.2.1 Simulink Block Diagram: Fuzzy Fixed-Point Circuit

Figure 8 shows an entire Simulink model of a fuzzy fixed-point circuit. It identifies, by using mathe-
matical components blocks in signal flow, the signal flow of two sine wave input (x input and y input) 
through the mathematical signal processing blocks-subtraction, absolute value, squaring, addition, 
and division to give a modular output. The result is compared through a relational operator to a 
threshold ε and the resulting output is passed on to the scope blocks to appear visually. This config-
uration will control the convergence/divergence of the two input signals on the basis of fuzzy value, 
automatically.

5.2.2 Scope Output: Threshold Check Signal

The Simulink representation of the implementation of the fuzzy modular fixed point evaluation cir-
cuit is demonstrated in figure 9a. The schematic at the top left shows how modular metric is computed

Á x y
� x y
� � x� �y

,� � �
�� �

� �� �

2

21
(13)

Figure 7: Error vs. Iteration Plot for Fuzzy Iteration in DeepONet Training.

Figure 8: Fuzzy Fixed-Point Circuit Implementation in Simulink.
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Difference, squaring, summation and division are the elementary building blocks to be used. The 
real-time binary convergence flag is observed in the right-hand scope window and takes up the value 
1 once the modular distance ρ(x,y)  falls below the specified value (ε=0.01). The output shows that 
convergence can be identified on a small time interval relative to successful convergence property of 
the fixed point under fuzzy modular constraint.

Output of the threshold check as a binary signal with time is shown in this figure 9b. The output 
value is on the vertical axis (0 or 1) and time in seconds on the horizontal. 1 means that the output 
of the modulus is less than the epsilon which means that the two input signals are almost equal at 
the time it reads 1. The small rectangle on the plot refers to the short period during which the fuzzy 
convergence condition has been fulfilled.

5.2.3. Modular Output Evolution

This Figure 10a shows how the output signal of the modular varies with time and Figure 10b shows 
Simulated Scope Output of Modular Output Evolution. The plot shows a visualization of the evolution 
of the normalized squared difference between the two sine waves that are fed to the network, and this 

Figure 9: (A) Simulation Circuit and Scope Output for Fuzzy Fixed Point Iteration; (B) Scope 
Output: Binary Threshold Check Result.

(A)

(B)



Nabavi A. et al., Results in Nonlinear Anal. 8 (2025), 222–238. 235

gives an understanding of when and how the threshold condition gets fulfilled. The dips in the curve 
reflect the instances that the two signals closely coincide, and they are directly connected to the pulses 
detected in the threshold check output.

The graph 11 shows the output of a binary threshold detector a fuzzy fixed-point circuit in Simulink. 
The horizontal axis is Time in seconds notation, with range of 0 to 0.01s and the vertical axis is Output 
in notation (0 or 1) to indicate the output after a comparison of unity or more thresholds.

There is only one, abrupt pulse no matter what the plot is, and the output starts at 0, then moves to 
1 then back to 0. This pulse is generated at the time when the normalized squared difference between 
two inputs of sine waves of high frequency is less than a predetermined epsilon level and the level 
is represented by a time when the two signals are very close to being in the same direction (conver-
gence). The output is set at 0 through out the rest of the simulation denoting no convergence. This 
image shows vividly when, and how long the fuzzy convergence incident was sensed by the circuit.

In figure 12, this 3D surface shows the learned output condition of the DeepONet model when the 
fuzzy iteration has converged. The level continuity of the surface indicates that the network performs 
stable, continuous approximative even though the network undergoes to fuzzy modular updates. The 
fuzzy framework is an effective method of limiting the uncertainty and avoiding weight diversion.

5.3 Observations

There were a few insights that were gleaned out of the simulations:

Figure 10: (A) Scope Output: Modular Output Evolution; (B) Simulated Scope Output: Modular 
Output Evolution.

(A)

(B)
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• Guaranteed Convergence: In a non-expansive case this method always converges. This confirm 
the theoretical guaranty which is obtained in the fuzzy modular metric space framework.

• Effect of p exponent: The exponent p of the modular function has importance in determining the 
speed of convergence. With p=2 in our experiments we found a good compromise between enforc-
ing smaller modular distances and destabilizing the iteration. The smaller the values of p, the 
greater is the tolerance and the lower is the sensitivity to weight changes.

• Fuzzy Modular Advantage: Using hybrid concept of fuzziness and modular measurements 
enhances the resistance to noise and uncertainties in training of a neural network. The fuzzy 
modular approach is to the contrary of strict metric spaces since it allows soft variations of out-
puts of operators avoiding the loss of convergence guarantees.

Figure 11: Scope Output: Binary Threshold Detection in Fuzzy Fixed-Point Circuit.

Figure 12: Surface Plot of Output Stability.
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• Resistance to initialization: The algorithm has been found to be quite insensitive to initialization, 
just as in the multiple experiments initialized with random vectors in Rd all demonstrated con-
sistent convergence. This is actually a very nice feature, in practical neural learning systems.

6. Conclusion and Future Work

The paper presents a strict elaboration of classical fixed-point theory in such homespun contexts as 
fuzzy modular metric spaces and proves its relevance to the stability theory of neural operators, such 
as DeepONets. The proposed theorems fill this gap in the existing literature since the existing liter-
ature provides no convergence guarantees in neural systems in the case of uncertainty and approxi-
mate computation and they do it by integrating modular structures and the novel use of fuzzy logic in 
systems with these properties.

Due to MATLAB simulation and theoretical development, we have set into place:

• The existence and the uniqueness of fixed points of non-expansive mappings in fuzzy modular set 
ups.

• A calculation design of iterative convergence which is founded on modular metrics.
• Usage of this framework to the training of neural operators even with fuzzy perturbation of the 

update dynamics by which they demonstrate a good stability.

Such results interpolate basic mathematical theory and recent machine learning, in favor of higher 
confidence, interpretable and theoretically sound neural structures.

6.1 Future Research Directions

Based on this work, there are a number of productive extensions that can be developed:

• Stochastic Fuzzy Environments: Add probabilistic uncertainty to fuzzy spaces, allowing learning 
by noise modeling to be modelled in fuzzy modular spaces.

• Analog Hardware Realization: Construct neuromorphic or analog circuits using fuzzy fixed-point 
logic to do in real-time, energy-efficient learning systems.

• Generalization to Other Architectures: Use theoretical framework to analyze the other deep 
learning models including Transformers, Graph Neural Networks (GNNs), or Physics-Informed 
Neural Networks (PINNs) to gauge modular stability in more general settings.
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