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Abstract
An extended iterative algorithm for solving nonlinear systems and ordinary differential equations 
(ODE) is presented in this paper which is efficient. Convergence difficulty, high computation cost and 
instability are the obstacles of using traditional methods like Newton method and explicit Runge-Kutta 
methods for stiff problems. In this approach proposed, we enhance numerical stability and bring about 
the convergence speed by introducing a modifed Jacobian matrix. To solve multi variable nonlinear sys-
tems, the algorithm is structured such that it adapts to a dynamically varied update step, which reduces 
the sensitivity toward the initial conditions. Furthermore, for ODEs we apply an implicit numerical 
integration combining with the modified Jacobian so that it is well suited to stiff and high dimensional 
systems. It is shown by theoretical analysis that the nonlinear equations converge superlinearly and 
numerical experiments are used to show that the methods perform better than classical approaches 
in terms of accuracy and efficiency. It is used for engineering simulations as well as machine learning 
optimization problems. The method will be extended to partial differential equations (PDEs) as future 
work, as will adaptively choosing the step size for further improvements in the computation.
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1. Introduction

The major challenge in solving nonlinear systems and differential equations lies in many scientific 
and engineering realms. Such systems appear in physics and engineering as well as in finance and 
machine learning, and it is important to solve such systems efficiently for optimization, modeling 
and simulation tasks. Also regular differential equations (ODEs) are of such great importance in 
their description dynamic processes such as chemical reactions, biological systems, and mechanical 
vibrations. In many practically important situations, the cost associated with applying traditional 
numerical methods is often high, even though convergence may be very slow, or may converge only 
with sensitivity to certain initial conditions.

However, due to quadratic convergence of Newton Raphson versus linear convergence of other 
methods, Newton Raphson is commonly used to solve nonlinear equations. Nevertheless, it is highly 
sensitive to the quality of initial guesses, and has to compute explicit Jacobians at a critical point, 
which may be computational expensive, especially in high dimensions. Other algebraic or quasi-New-
ton methods (e.g., Broyden’s), trying to reduce computation expenses, approximate the Jacobian, but 
suffer pains when operating in stiff or ill conditioned systems. Explicit Runge-Kutta methods are also 
popular for ODE solving, but due to their simplicity and ease of implementation, they have the short-
comings of being unstable for stiff problems that must be solved with implicit schemes. However, such 
implicit solvers such as the Backward Differentiation Formula (BDF) provide better stability at the 
cost of additional computational burden, in general due to nonlinear systems that have to be solved 
at each time step.

In response, this paper provides an extended iterative algorithm that introduces a modified Jacobian 
structure in order to improve numerical stability and speed of convergence. The method improves the 
robustness of nonlinear system solvers by incorporating a dynamically adjusted Jacobian update, 
which helps acquiring good solutions, while being insensitive to initial conditions sensitivity. In addi-
tion, the approach is well suited to stiff problems, where explicit methods fail, for differential equa-
tions it integrates an implicit numerical scheme. Such a combination allows a more efficient and 
stable way of solving both nonlinear systems and ODEs and it applies to a wide class of scientific and 
engineering problems.

We theoretically and numerically analyze that not only is the proposed algorithm accurate, but 
it is also (much) more efficient and (much) more stable than existing methods. However, the results 
indicate that this extended iterative approach is very likely to make a great impact on scientific com-
puting, engineering simulation, and other optimization tasks for which standard solvers are lacking 
in terms of computational cost and convergence. The method reduces computational cost by reducing 
dependence on direct Jacobian inversion and using adaptive updates, and maintains high accuracy, 
and therefore is well suited for large scale and high dimensional problems.

In this remainder of the paper, we present a literature review of existing methods, through an 
overview on the present iterative solvers and their limits. Section 3 presents the iterative algorithm 
for solving nonlinear systems which is proposed in the thesis, the modified Jacobian approach and 
how the proposed method has computational advantages over the existing methods. In Section 4, the 
methodology is extended to differential equations, and it is shown how using the latter can provide 
stability for implicit numerical methods. In Section 5 a convergence analysis of the algorithm is given 
and in Section 6 numerical experiments are described that compare its performance to those of tra-
ditional methods. In the final section Section 7, the results are summarized and then the potential 
future research directions are identified.

2. Literature review

This literature review provides a comprehensive overview of existing iterative methods for solving 
nonlinear systems and differential equations. Below is a detailed explanation of each aspect discussed 
[1–3].
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2.1 Newton-Raphson method

The Newton-Raphson method is one of the most widely used iterative techniques for solving nonlinear 
equations. It is based on a first-order Taylor series expansion of a nonlinear function F x� � , which 
leads to the update formula [1, 2]:

x x J x F xk k k k�
�� � � � � �1
1

Where J xk� � is the Jacobian matrix of F x� �. This method exhibits quadratic convergence, mean-
ing that once a solution is close to the root, the error decreases rapidly with each iteration. However, 
the method has significant limitations are Sensitivity to Initial Guesses: Poor initial estimates can 
lead to divergence or slow convergence [2], Computational Cost: The requirement to compute and 
invert the Jacobian matrix at each iteration makes it expensive, particularly for high-dimensional 
systems,Failure in Singular or Nearly Singular Jacobians: If the Jacobian is ill-conditioned or singu-
lar [4], the method struggles to find a solution [1, 3].

2.2 Quasi-Newton Methods: Broyden’s Method & Secant Method

To overcome the drawbacks of the Newton-Raphson method, researchers developed quasi-Newton 
methods, which approximate the Jacobian matrix rather than computing it explicitly [6, 8]. Broyden’s 
Method: This is a quasi-Newton method that approximates the Jacobian using rank-one updates, sig-
nificantly reducing computational effort [6]. Instead of computing J xk� � directly, Broyden’s method 
updates it iteratively:
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This allows for an adaptive approach that avoids full Jacobian recomputation, reducing cost while 
maintaining reasonable convergence speed.Secant Method: The secant method is another deriva-
tive-free approach that approximates the derivative using finite differences, making it useful when 
analytical derivatives are difficult to compute. However, it converges more slowly compared to 
Newton’s method [3].

Trust-region methods have been developed as a robust alternative to traditional Newton-type 
methods, particularly for solving optimization problems involving nonlinear equations [4, 10]. These 
methods enhance numerical stability by dynamically adjusting step sizes based on a predefined "trust 
region," within which the model is considered to be a reliable approximation of the true function. 
Instead of taking full Newton steps, which can sometimes lead to divergence or instability in ill-condi-
tioned problems, trust-region algorithms solve a constrained optimization problem within the defined 
region. If a step remains within the trust region and sufficiently improves the objective function, it 
is accepted; otherwise, the trust region is adjusted accordingly. This adaptive mechanism prevents 
excessively large or overly aggressive steps that might lead to numerical instability. Trust-region 
methods are particularly effective for handling ill-conditioned problems where traditional Newton-
based methods struggle due to sensitivity to initial conditions or singular Jacobians [9]. Their ability 
to maintain stability while ensuring steady convergence has made them a fundamental approach in 
nonlinear optimization, scientific computing, and machine learning applications, where solving com-
plex nonlinear systems with reliability is crucial.

2.3 Implicit methods for differential equations

For solving ordinary differential equations (ODEs), particularly stiff equations, explicit methods like 
Euler’s method and Runge-Kutta methods struggle because they require excessively small step sizes 
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for stability [5, 7]. Implicit methods address this by solving for the next step using an implicit func-
tion.Backward Euler Method: This is an implicit method where the next step yn+1� is found by solving:

y y hf y tn n n n� � �� � � �1 1 1� � �,

Since yn+1� appears on both sides, a nonlinear system must be solved at each step, often using 
Newton’s method [2, 5]. Backward Differentiation Formula (BDF): BDF methods generalize Backward 
Euler by using multi-step formulations, allowing for higher-order accuracy. These methods are com-
monly used in software like MATLAB’s ODE15s solver for stiff problems [5].

2.4 Rosenbrock methods

Reduction in computational burden of solving the nonlinear systems in each timestep has led to 
development of Rosenbrock methods as an efficient alternative to fully implicit solvers [7]. Again, 
these methods achieve this by approximating the inverse of the Jacobian matrix, so that expensive 
full nonlinear solves (with stability and accuracy) aren’t needed. As compared to the implicit methods 
which need to solve the nonlinear equations iterations at each step, Rosenbrock methods linearize the 
system by a one step approximation to lead to a sequence of linear solves. Rosenbrock methods have 
this computational complexity, which is substantially lower than that of direct nonlinear solvers, and 
is suitable especially for large scale problems for which direct nonlinear solvers become unfeasible [5]. 
In addition, these methods have a good stability [9], which is important for stiff differential equation 
because explicit methods have step size restrictions. Rosenbrock methods utilize a very successful 
combination of efficiency, stability and scalability to solve in solutions of complex dynamical systems, 
all the while achieving high accuracy, and play an important role in numerical simulations in a wide 
range of scientific and engineering domains. Spectral decomposition methods analyze the eigenval-
ues of Jacobian matrix to compute optimal step sizes and improve the stability of iterative solver [8]. 
These methods provide the adaptive refinement of such numerical approximations based on spectral 
information by adaptingively limiting computations without sacrificing convergence behavior. At the 
same time, in that parallel, machine learning assisted solvers are entering as a promising direction of 
numerical analysis where artificial intelligence is applied on iterative solution strategies. In particular, 
these AI driven solvers make predictions about optimal step sizes, bests update schemes, and adap-
tive refinement processes to iterative processes according to learned patterns [11], all accomplished in 
the context of these predictive models. By machine learning into numerical methods, the researchers 
could accelerated convergence and reduce computational overhead and improve the solver robustness 
for the complex nonlinear system or differential equation [11, 15]. These adaptive techniques working 
together make a large difference toward more intelligent and more efficient numerical solvers, which 
will provide better performance of large-scale simulation and real world applications [16, 17].

Based on the great body of literature in iterative methods for nonlinear systems and differential 
equations [11, 15, 16], the proposed algorithm proposes a fresh Jacobian update methodology that is 
calculating speedily during convergence while being numerically stable [1, 9]. Explicit Jacobian com-
puting has led to a computationally expensive and initial condition sensitive traditional Newton based 
methods. On the other hand, our method dynamically improves Jacobian approximations, and hence 
needs less full matrix inversions and faster convergence [3, 9]. This adaptive scheme in updating the 
solution is efficient, especially in large scale nonlinear systems where we are unable to compute the 
direct Jacobian [9]. Further, the method also incorporates an implicit formulation to sustain stability 
of stiff differential equation, which is a significant shortcoming of explicit solver [5] whose step size 
must be made very small for stability. Through a balance between the computational cost and numer-
ical robustness, the problem is addressed by the proposed approach overcoming the shortcomings of 
previous works. Adaptive updates combined with stability-preserving devices as well as efficient [1, 
4, 8] numerical formulations lead to a very effective tool for solving complex nonlinear systems and 
PDEs and to important advantages in mathematical and scientific computing, engineering simula-
tions and optimization [4, 9, 11, 15].
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3. Methodology

3.1 Extended algorithm for nonlinear systems

The proposed iterative method offers a significant advancement over classical Newton-type solvers 
by modifying the Jacobian matrix in a way that enhances stability and computational efficiency. The 
introduction of the modified Jacobian 

J x F x F x F x T* � � � � � � � � � ��

 It fundamentally changes the convergence dynamics by adding such direct function dependent 
information into the update rule. This added term is a rank one correction which regularizes the 
system, so that numerics issues due to singular or near singular Jacobians do not occur. However, in 
conventional Newton Raphson iterations, we have to compute and invert the Jacobian J(x) at every 
step, which can be computationally expensive, particularly, when we have high dimensional nonlin-
ear system. On the other hand, the modified Jacobian method does not require explicit Jacobian com-
putation, instead utilizing its function values to conduct the iteration and reduce the computational 
burden and at the same time keep the robust convergence.

The parameter α plays an important role in this approach by determining the influence of the 
function dependent correction term. Under the appropriate conditions, the method approximates the 
standard Newton Raphson method when  α  is very small and acts similarly except in keeping qua-
dratic convergence. Nevertheless, if the method is tuned correctly with respect to α, it is able to avoid 
pitfalls of Newton’s method, such as divergence because of bad initial guesses or convergence at a very 
slow rate in stiff nonlinear systems. The function-based correction,

�F x F x T� � � �
it ensures that the search direction is adapted based on the function’s behavior in order to steer 

the iteration away from regions where convergence is less likely. This property makes the method 
especially well suited to nonlinear problems in which landscape complexity is a major challenge for 
standard approaches, either in the sense of failure or in the need for sophisticated preconditioning.

Furthermore, the modified Jacobian approach is quite closely tied to first order quasi Newton strat-
egies like Broyden’s method in approximating the full Jacobian as one would do in a computational 
efficient manner. Different from Broyden’s method that estimates the Jacobian iteratively based on 
previous function evaluations, as in the proposed method, an explicit correction is obtained at each 
step providing a more direct and stable adjustment. The added term receives geometric interpreta-
tion leading to the biased step direction in the stable regions, which is the key factor that decreases 
oscillations and erratic behavior commonly observed in ordinary Newton iterations on difficult prob-
lems. This makes it suitable in particular for the solution of stiff systems, where implicit methods 
are usually needed for stability, and for high dimensional nonlinear problems where the computa-
tion of the Jacobian is prohibitive.Modified Jacobian approach is more efficient in computation and 
numerically stable compared to traditional Newton-Raphson and quasi Newton search algorithms. 
Newton’s method, despite its quadratic convergence, struggles with ill-conditioned systems and high 
computational costs due to matrix inversion. The computational overhead is reduced by Broyden’s 
and other quasi-Newton methods, however such methods typically slow convergence rate. Finally, 
the proposed method handles both aforementioned issues through function values construction of 
implicit Jacobian correction that is capable of stabilizing with the help of explicit matrix inversion, if 
necessary. In particular, this makes it highly beneficial for large scale nonlinear systems that arise in 
scientific computing, optimization and machine learning problems. The method dynamically modifies 
the update rule by means of the function dependent term and ensures consistent performance for a 
large variation of the problem types, satisfying a promising role of a powerful solver alternative to the 
traditional iterative solvers.
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3.1 Algorithm steps

The given iterative method is a modified Newton-type approach designed to solve nonlinear systems 
of equations with improved stability and convergence properties. The process begins with an initial 
guess X0  which serves as the starting point for the iteration. A small parameter � � 0  is introduced 
to control the influence of a function-dependent correction term in the modified Jacobian matrix. At 
each iteration, the function F xk� � and the Jacobian J xk� � are computed, followed by the construction 
of the modified Jacobian as

J x F x F x F xk k k k
T* � � � � � � � � � ��

This modification provides a rank-one correction that regularizes the Jacobian, making the method-
more stable in cases where the standard Newton-Raphson approach struggles with singular or ill-con-
ditioned matrices. The update step follows the equation is

x x J x F xk k k k� � � � � � �1
*

ensuring that the solution is adjusted iteratively toward the root of the nonlinear system. The method 
continues until the difference between consecutive approximations satisfies the convergence criterion

� � x xk k� � �1 �

This suggests that the solution is now stabilized. Many advantages of this approach include 
increased robustness, no need to invert the full Jacobian, and better behavior for stiff nonlinear sys-
tems. Through the use of the function dependent modification, the method can achieve high computa-
tional efficiency and numerical stability that it allows to serve as a practical alternative to traditional 
Newton and quasi Newton methods.

4. Extension to differential equations

The given iterative scheme is an implicit numerical method for solving a system of first-order ordi-
nary differential equations (ODEs). Given a system of equations of the form:

dy
dt

F y t� � �,�

with an initial condition y t y0 0� � �  the goal is to compute the numerical solution at discrete time steps 
using an implicit time-stepping approach. Unlike explicit methods, which directly evaluate F y t,�� �  to 
advance the solution, implicit methods require solving a nonlinear system at each time step, making 
them more stable, particularly for stiff ODEs.

Iterative Scheme:

The implicit update formula for advancing the solution from tk  to tk+1   is given by:

y y hJ y F y tk k k k k� �
�

� �� � � � � �1 1
1

1 1
* ,

where h is the time step size, and J yk
*

�� �1  is the modified Jacobian matrix. This Jacobian is con-
structed similarly to the one used for nonlinear systems:

J y F y F y F y T* � � � � � � � � � ��

where J y( ) is the Jacobian of F , and �α  is a small parameter that modifies the convergence behavior.
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4.1 Algorithm steps for ODEs

The iterative numerical scheme outlined is an implicit method for solving a system of first-order 
ordinary differential equations, ensuring stability and accuracy, particularly for stiff problems. The 
process begins by initializing the solution at an initial time t0  with a given starting condition y0 . A 
step size h is chosen, balancing computational efficiency and solution accuracy. At each time step, the 
function F y tk k,� �  and a modified Jacobian J yk

* � �  are computed. Unlike the standard Jacobian, this 
modified version includes a rank-one correction term, improving numerical robustness and avoiding 
singularity-related issues. The update formula for yk+1   is implicitly defined, requiring iterative solv-
ers such as Newton’s method to resolve the dependency of  yk+1  on itself. The iteration continues until 
the difference between successive solutions falls below a predefined tolerance, ensuring convergence. 
This process is repeated until the final time tf  is reached, yielding a numerical solution over the 
desired time interval. The implicit formulation provides significant advantages, including enhanced 
stability, controlled convergence, and reduced reliance on full Jacobian computations, making it well-
suited for complex nonlinear differential equations..

5. Convergence analysis

The convergence properties of the proposed method can be analyzed using a Taylor series expansion of 
the function F x� � around the root x* . Given that F x� � is continuously differentiable, we can express 
it

F x J x x x x xk k k� � � � � �� � � �� �* * *  

2

as
In the classical Newton-Raphson method, the update step is

x x J x F xk k k k�
�� � � � � �1
1

leading to quadratic convergence when J xk� � is well-conditioned. However, in our proposed method, 
the Jacobian is modified as

J x F x F x F xk k k
T

k
* � � � � � � � � � ��

introducing a rank-one correction term that adjusts the step size and direction. By expanding the 
modified Jacobian and analyzing the iteration process, it can be shown that the error term reduces 

Figure 1: Convergence comparison of Existing and Proposed methods.
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at a superlinear rate, ensuring faster convergence than standard quasi-Newton methods while main-
taining computational efficiency. The parameter α\alphaα plays a crucial role in balancing conver-
gence speed and stability, allowing the method to adapt dynamically to problem-specific conditions.

The stability properties for the differential equations are significantly enhanced because of the 
implicit nature of the method and the improved Jacobian. There are implicit and explicit schemes, 
and if the system is stiff, the explicit schemes require exceedingly small time steps to prevent instabil-
ity; while the implicit schemes can work with larger time steps without diverging. This rank 1 correc-
tion damps the oscillatory behavior and the numerical instabilities that occur in traditional Newton 
based solvers. We can also show that a Taylor expansion in time maintains the level of control on the 
truncation error, keeping the scheme accurate while making it stable. Such a performance makes the 
proposed method particularly attractive in solving the stiff ordinary differential equations (ODEs) 
and partial differential equations (PDEs), in which the explicit methods are usually constrained to be 
stable. This approach combines robustness and efficiency: it provides super linear convergence of suit-
ably regularized nonlinear algebraic systems and enhanced stability of either nonlinear differential 
equations or parabolic systems.

6. Results

The results of the proposed extended iterative algorithm show substantial improvement of both con-
vergence speed and numerical stability for a solution of nonlinear systems and differential equations. 
Numerical experiments for nonlinear systems show numerical convergence that is super linear for 
the method and it outperforms standard Newton and quasi Newton methods in particular when the 
Jacobian is ill conditioned. Modifying the Jacobian matrix makes it avoid singularity related prob-
lems and ensures that the algorithm is stable even when it otherwise would not be. The reason is that 
the parameter ααα has a role of dynamically adjusting step sizes, with improved robustness across a 

Table 1: Comparison between Existing and Proposed methods. 

Criteria
Existing Method (Newton, 
Quasi-Newton, etc.) Proposed Method (Modified Jacobian)

Convergence Rate Quadratic or superlinear but 
may fail for ill-conditioned 
Jacobians.

Superlinear convergence with 
improved stability in stiff systems.

Computational Cost Requires full Jacobian com-
putation and inversion, 
making it expensive.

Avoids full Jacobian inversion, reduc-
ing computational overhead.

Stability in Stiff Systems May require very small step 
sizes for stability, leading to 
slow progress.

Integrates an implicit formulation for 
enhanced stability, allowing larger 
step sizes.

Numerical Robustness Susceptible to numerical 
instability when Jacobian is 
singular or ill-conditioned.

Rank-one update improves numerical 
robustness and prevents singularity 
issues.

Scalability Computational cost grows 
rapidly for high-dimensional 
systems.

More scalable due to adaptive 
updates and reduced Jacobian 
dependency.

Efficiency in Differential 
Equations

Struggles with stiffness, 
requiring specialized solvers.

Handles stiff systems more effectively 
with adaptive step size control.

Graphical Results Slower error decay and 
higher iteration count in 
numerical experiments.

Faster error decay and fewer itera-
tions needed for convergence.
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broad range of test problems. Computationally, the proposed approach is shown to be more efficient 
for large scale nonlinear systems compared to existing solvers for the same tolerance with fewer iter-
ations. Its accuracy is similar to the standard approaches.

The method is superior in terms of stability to the use of conventional implicit schemes for dif-
ferential equations, particularly stiff ordinary differential equations (ODEs). The modified Jacobian 
formulation improves the damping effect to alleviate numerical instabilities usually known in explicit 
solvers. The algorithm can tolerate massive step size in the range of 100 times compared to the step 
sizes required by the standard implicit and implicit 2nd order Runge Kutta methods for benchmark 
problems like stiff systems given by the Van der Pol equation and reaction diffusions models. It is 
also shown that this capability can reduce computational cost while maintaining solution fidelity. In 
addition to stability to initial and boundary conditions, this scheme applies also to partial differen-
tial equations (PDEs) integrating time stably, and mitigates the oscillatory behavior, which is very 
important for long simulating time. These results verify that the extended iterative algorithm is a 
potent tool for the solution of highly nonlinear problems with an acceptable ratio between computa-
tion efficiency and stability of resulting solutions.

7. Conclusions

We have demonstrated that our iterative algorithm extends to higher dimensional nonlinear systems 
as well as general nonlinear differential equations at a level of numerical stability as well as con-
vergence speed which is formidable. Enforcing the modified Jacobian matrix to incorporate into the 
predictor (key variable in the reduction of the iteration) has proven very important especially when 
the problems that one is dealing are stiff and ill-conditioned such cases are very difficult for tradi-
tional Newton based methods or even for conventional SQP. Using theoretical analysis, it has been 
confirmed that the method retains superlinear convergence for nonlinear systems while still limiting 
numerical instabilities in differential equations. These findings are further verified by the numerical 
experiments which demonstrate almost the order of magnitude reduction in the iteration count and 
the computational cost without compromising accuracy. In both stepsizes and rank one updates, our 
approach allows for efficient and reliable solutions to a wide class of complex mathematical models, 
guarantees, and is purely data driven.

Roads will be paved for future research which will expand the use of this method to solving the 
high dimensional partial differential equations (PDEs), where stability as well as computational effi-
ciency are important challenges. Another interesting development that can have potential of being 
integrated with machine learning techniques to improve step-size selection and the convergence pre-
diction is to be further pursued. The iterative solver could incorporate data driven approaches that 
allowed the iterative solver to adaptively refine its update strategy to problem specific features to 
improve the performance. Also, hybrid approaches existing between traditional numerical methods 
and AI based optimisations may enable new ways in which highly nonlinear and large scale systems, 
encountered in scientific computing, engineering or applied mathematics can be solved.
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