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Abstract
Human metapneumovirus (hMPV) is a common respiratory virus that represents a major public health 
burden, especially in children, older adults, and immunocompromised patients. However, traditional 
compartmental models, which apply to single-pathogen transmission, do not always adequately char-
acterize the complexity of co-infections and vaccination dynamics. Here, we extend a SEIR model with 
two more compartments: one for those coinfected with hMPV, one for those infected with respiratory 
viruses other than hMPV, and another compartment for the vaccinated. This complex frame allows 
a realistic representation of hMPV transmission and control interventions. As a numerical solution 
method, we use the finite difference method (FDM) to study the behavior of these nonlinear and cou-
pled differential equations. This method breaks down the time evolution of each compartment and 
can be used to simulate disease dynamics under different public health intervention schemes, such 
as vaccination rates. Simulation shows that intensive vaccination would significantly decrease the 
peak of infections and expedite the epidemic’s control, especially together with non-pharmaceutical 
interventions. The co-infection compartment shows how the simultaneous presence of overlapping 
infections can exacerbate the severity of an epidemic, emphasizing the need for combined control 
strategies. Our model is a useful tool for understanding hMPV epidemic in the presence of other 
pathogens, which helps estimate the efficacy of vaccination strategies. This biologically motivated 
model, coupled with a strong numerical solution, provides important information for health authori-

Email addresses: aytekinanwer@gmail.com (Aytekin Enver), fayaz@gazi.edu.tr (Fatma Ayaz), alimahmoodoguranwer.anwer@
gazi.edu.tr (Ali M. O. A. Anwer), reyhan.ak@gazi.edu.tr (Reyhan Bilgic Ak)



Enver A, et al., Results in Nonlinear Anal. 8 (2025), 59–81.� 60

1. Introduction

 Human metapneumovirus (hMPV), which was discovered in 2001, is now known as one of the most 
critical viral etiologic agents in acute respiratory infections, especially in young children, immuno-
compromised patients, and elderly people [1]. The majority of infected cases are asymptomatic or 
present with mild to moderate symptoms; however, rare cases with severe clinical outcomes and com-
plications also occur in patients who also suffer from comorbid conditions [2].

Traditional compartmental models, such as the SEIR (Susceptible–Exposed–Infectious–Recovered) 
framework, have been widely used to understand the dynamics of infectious diseases. These models 
provide a solid foundation for analyzing the fundamental mechanisms of disease spread. However, 
they often operate under simplifying assumptions, focusing on single pathogens and neglecting 
important real-world complexities such as co-infections and vaccination. Many clinical reports have 
confirmed that patients frequently harbor more than one respiratory pathogen simultaneously, which 
may intensify disease severity and alter transmission patterns. Ignoring such interactions can under-
estimate the scale of outbreaks and reduce the accuracy of predictive models.

In addition, vaccination remains one of the most effective public health measures for controlling 
epidemics, yet its impact is not always integrated into standard SEIR-type models. Incorporating 
vaccination dynamics alongside co-infection processes can provide a more realistic and comprehensive 
picture of epidemic trajectories, thereby improving the design of control strategies.

In this study, we extend the classical SEIR model by introducing additional compartments to rep-
resent co-infections with hMPV, infections with other respiratory viruses, and vaccinated individuals. 
This extension allows us to analyze overlapping infections and evaluate vaccination strategies within 
a unified framework. The model is solved numerically using the finite difference method (FDM), which 
enables accurate simulation of nonlinear and coupled dynamics. Simulation results show that inten-
sive vaccination can significantly reduce the infection peak and shorten epidemic duration, particu-
larly when combined with non-pharmaceutical interventions. Moreover, the co-infection compartment 
highlights how overlapping infections exacerbate epidemic severity, underscoring the importance of 
integrated control measures.

Human metapneumovirus (hMPV) is a leading cause of acute respiratory tract infections world-
wide, particularly in children, older adults, and immunocompromised populations. Despite its clinical 
importance, mathematical modeling efforts for hMPV have been relatively limited compared to other 
respiratory viruses such as influenza or respiratory syncytial virus (RSV). This gap underscores the 
need for models that can capture both the biological characteristics of hMPV and the epidemiological 
complexity associated with its transmission.

Traditional SEIR-based models provide a valuable framework for understanding epidemic dynam-
ics; however, they often focus on single-pathogen scenarios and neglect crucial factors such as co-in-
fections and vaccination. In real-world settings, patients frequently present with multiple respiratory 
viruses at the same time, which can intensify disease severity and alter transmission pathways. 
Furthermore, vaccination strategies are increasingly being explored as essential tools in epidemic 
control, yet their effects are not always integrated into standard SEIR models. Addressing these gaps 
provides the motivation for the present study.

ties in their quest to minimize the effects of the disease. The extended SEIR framework demonstrates 
how vaccination intensity directly affects epidemic duration, recovery rates, and co-infection out-
comes. Moreover, the scenario-based simulations highlight that aggressive vaccination strategies can 
reduce epidemic control time from nearly two months to less than three weeks, providing actionable 
insights for policymakers.
Mathematics Subject Classification (2010): 93A30, 65M06, 65L06, 32G34
Key words and phrases: Human metapneumovirus (hMPV); Mathematical Modeling; Finite Differ-
ence Method; Co-infection Dynamics; Vaccination Strategies 
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By extending the SEIR framework with compartments for co-infection and vaccination, we aim to 
more realistically represent hMPV epidemic dynamics. This approach not only allows for the analysis 
of overlapping infections and intervention strategies but also creates a platform to explore policy-rele-
vant scenarios. In addition, the use of a robust numerical method, namely the finite difference method 
(FDM), ensures that the model can capture nonlinear behaviors and provide reliable simulations of 
epidemic evolution.

By extending the SEIR framework with compartments for co-infection and vaccination, we aim to 
more realistically represent hMPV epidemic dynamics. This approach not only allows for the analysis 
of overlapping infections and intervention strategies but also creates a platform to explore policy-rele-
vant scenarios. In addition, the use of a robust numerical method, namely the finite difference method 
(FDM), ensures that the model can capture nonlinear behaviors and provide reliable simulations of 
epidemic evolution.

1.1. Epidemiological Relevance of hMPV

Epidemiologic data have revealed that hMPV is endemic worldwide and contributes to the seasonal 
load of respiratory illness [2–4]. It commonly circulates together with other respiratory viruses such 
as respiratory syncytial virus (RSV) and influenza, making the situation even harder for clinicians 
and public health authorities [5]. This overlapping circulation, as well as making the diagnosis of the 
individual viruses more difficult, also makes it prone to lead to more severe disease in the case of a 
double infection [6]. Interestingly, it has been reported that hMPV strains of multiple lineages co-cir-
culate, and that this diversity could likely result in the widespread occurrence of hMPV in countries 
with high burden of importance, though a recent genotyping and molecular detection study from India 
has reported multiple co-circulating hMPV sublineages infecting the SARI patients [7].

1.2. Limitations of Traditional SEIR Modeling

SEIR (Susceptible–Exposed–Infectious–Recovered)-based compartmental models have been of partic-
ular importance for understanding the basic elements that govern the spread of respiratory viruses. 
These models, however, are often focused on a single pathogen and fail to adequately incorporate real-
world complexities such as co-infections and vaccine strategies [8]. As many reports now show that 
individual patients may harbor more than one pathogen at a given time [3, 4], ignoring co-infection 
dynamics can underestimate both total infections and the extent of outbreaks.

To provide a clearer foundation for the subsequent model extension, we briefly present the classical 
SEIR model in its standard mathematical formulation. The model divides the total population N t( )  
into four compartments: Susceptible S t( ) , Exposed E t( ) , Infectious I t( ), and Recovered R t( ) . The 
system is governed by the following set of ordinary differential equations:

dS
dt

SI
N

= ,�� (1.1)

dE
dt

SI
N

E= ,� �� (1.2)

dI
dt

E I= ,� �� (1.3)

dR
dt

I= .γ (1.4)

Where 
• β : transmission rate,
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• σ : rate at which exposed individuals become infectious (inverse of incubation period),
• γ : recovery rate,
• N S E I R= + + + : total population (assumed constant).

This baseline model captures the dynamics of a single-pathogen outbreak but does not account 
for important factors such as co-infections with other viruses or the protective impact of vaccination. 
Therefore, in this study, we extend this framework by adding compartments for vaccinated and co-in-
fected individuals to more accurately model the spread and control of hMPV in realistic scenarios.

1.3. Emerging Lineages and Geographic Distribution

Active genomic surveillance has identified new hMPV lineages that may change the transmissibility 
and immune evasion properties of the virus. To give you an example, N. Devanathan et al. (2025) 
reported the appearance of new hMPV sublineages A2.2.1 and A2.2.2 among pediatric cohorts from 
India, suggestive of their potential role in altering transmission dynamics and severity of disease [9]. 
Similarly, Zhu et al. (2020) found that co-infections of hMPV with parainfluenza virus might worsen 
clinical outcomes in high-risk groups, particularly elderly patients [10].

1.4. Pediatric Settings and Seasonal Dynamics

Several studies have concentrated on daycare centers and pediatric wards, where young children are 
especially susceptible to co-circulating viral pathogens [11]. Mendes et al. [12] have demonstrated 
that hMPV–rhinovirus co-infections may enhance both transmissibility and clinical severity, par-
ticularly in crowded indoor settings. Phases of seasonal peaks, often in late fall and winter, tend to 
coincide with a circulation of other respiratory viruses, thus fueling clusters of co-infection. Thus, 
prompt testing, strong vaccination strategies, and effective non-pharmaceutical measures (e.g., hand 
hygiene, wearing the correct mask, and enhanced ventilation) might together help mitigate the occur-
rence of severe co-infections.

However, viral infections such as hMPV continue to present challenges in treating patients, and 
emerging cell-based therapies hold promise for addressing these infections in innovative ways. By 
harnessing engineered immune cells to augment pathogen-specific immunity, virus-specific T-cell 
(VST) therapies have shown substantial promise in targeting viruses that are resistant to immune 
responses. They, including autologous or allogeneic T cells, have all shown promising pre-clinical 
activity in the context of respiratory viruses such as hMPV and RSV. In addition, the implementation 
of cellular therapies such as CAR T cells provides a novel modality to treat severe and co-infected 
cases of viral diseases in which vaccines and antiviral drugs do not work well. This highlights the 
need for further studies on cell-based immunotherapy as the mainstay of treatment for such elaborate 
viral infections [13, 14].

1.5. Challenges and Future Directions

Despite these advances toward understanding hMPV’s molecular evolution and co-infection propen-
sity, important areas remain uncharacterized. This calls for (1) an integrated surveillance system 
to track multiple pathogens in parallel, (2) age-specific prevention approaches, given heterogeneous 
risk profiles, and (3) improved vaccine designs or other passive immunization therapies to ameliorate 
severe disease outcomes. Further investigation into the genetic basis of new sublineages, together 
with epidemiological data, will be essential for the direction of clinical management and public health 
measures.

The following sections will detail a mathematical model incorporating hMPV co-infections within 
an extended SEIR framework. And this strategy also considers how multiple pathogens might work 
synergistically and how the vaccination might change susceptibility. Our model seeks to disentangle 
the dynamics of hMPV co-infection in order to identify optimal strategies to mitigate the burden both 
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of hMPV as a single infection and in the face of co-circulation by other respiratory pathogens, through 
scenario analyses that alter rates of co-infection and vaccine coverage.

Human metapneumovirus (hMPV) is a leading cause of acute respiratory tract infections world-
wide, particularly in children, older adults, and immunocompromised populations. Despite its clinical 
importance, mathematical modeling efforts for hMPV have been relatively limited compared to other 
respiratory viruses such as influenza or respiratory syncytial virus (RSV). This gap underscores the 
need for models that can capture both the biological characteristics of hMPV and the epidemiological 
complexity associated with its transmission. Similarly, multiscale reactionâ€“diffusion approaches 
have also been employed in modeling the pathology of Alzheimer’s disease [21].

2. Extended SEIR Model for hMPV Dynamics

2.1. Model Overview

This extended SEIR model specifically targets Human Metapneumovirus (hMPV) dynamics and 
includes a co-infection compartment (C ) and a vaccination compartment (V ):

• S t( ) : Susceptible individuals 
• E t( ) : Exposed (infected but not yet infectious) 
• I t( ): Infectious (actively transmitting hMPV) 
• C t( ): Co-infected (hMPV + another respiratory pathogen simultaneously) 
• R t( ) : Recovered (immune after infection) 
• V t( ) : Vaccinated (partially or fully protected against hMPV) 

The governing system of differential equations is given as follows:

dS
dt

N SI S S= ,� � � �� � � (2.1)

dE
dt

SI E E= ,� � �� � (2.2)

dI
dt

E I= ( ) ,� � � � �� � � � (2.3)

dC
dt

I C= ( ) ,� � � �� � � (2.4)

dR
dt

I C S R= ( ) ,� � �� � � (2.5)

dV
dt

S V= .� �� (2.6)

Where: 
• β : Transmission rate (hMPV)
• σ : Progression rate from exposed to infectious (1 / � �  incubation period)
• γ : Recovery rate
• κ : Co-infection rate (likelihood of acquiring a secondary infection given hMPV)
• ρ : Vaccination rate (daily)
• µ : Birth/death rate
• δ : Disease-induced death rate (severe cases)
• N : Total population (constant, assuming births/deaths balance out)
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2.2. Basic reproduction number via the Next Generation Method

We compute the basic reproduction number R0  for the extended SEIR framework with vaccination 
and co-infection. Let the infectious subsystem be x E I T= ( , ) . Denote by β  the hMPV transmission 
rate, σ  the progression rate from E  to I , γ  the recovery rate, µ  the natural birth/death rate, and δ  
the disease-induced mortality. Vaccination proceeds at rate ρ  with vaccine efficacy against infection 
� �[0,1] (with ε =1 meaning perfect protection).

At the disease–free equilibrium (DFE), the susceptible and vaccinated fractions satisfy 

S N V N* *= , = .�
� �

�
� �� �

(2.7)

Under partial protection, the effective susceptible pool at DFE is 

S S V Neff
* * *= (1 ) = (1 ) .� � �

� �
�

�
� � �

� �
(2.8)

Let the force of infection be � �= /I N  at early invasion (the co-infection class C  is zero at the DFE, 
so its contribution vanishes to first order). The new-infection vector and transition vector for ( , )E I  are 

F X S V X
E
I E

( ) =
0

, ( ) = ( )
( )

.
*� � �

� � � �
eff�

�
�

�

�
�

�
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�

�
�

�

�
� (2.9)

Linearizing at the DFE yields the Jacobians 
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The next generation matrix is K FV= 1− . A direct calculation gives the spectral radius 

R S
N0

*
=
( )( )

��
� � � � �� � �

� eff

=
( )( )

(1 ) .��
� � � � �

� � �
� �� � �

�
� �

�
(2.11)

Remarks. 
	 1.	 If vaccination is perfect (ε =1), then S

N
eff
*
= �
� ��

 and 

R0 = ( )( )
.��

� � � � �
�

� �� � �
�

�
(2.12)

	 2.	 With no vaccination (ρ = 0), we recover the standard SEIR-with-demography expression: 

R0 = ( )( )
.��

� � � � �� � �
(2.13)

	 3.	 The co-infection class C  does not contribute at the DFE if co-infection requires prior infection with 
another pathogen; hence its first-order effect on R0  vanishes. If a baseline external force of co-infec-
tion is assumed, an additive term enters F1 and can be included analogously. 
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2.3. Parameter Values and Initial Conditions

Below are the updated parameter values and initial conditions:

2.3.1. Clarification on the Origin of Parameter Values

The parameter values used in this study were derived from a combination of published empirical 
data and reasonable assumptions suitable for scenario-based modeling. Specifically, values such as the 
transmission rate (β ), incubation rate (σ ), and recovery rate (γ ) are based on clinical or epidemiolog-
ical studies and are accompanied by references (e.g., Zhu et al., 2020; Feltes et al., 2003). In contrast, 
parameters such as the co-infection rate (κ ) and daily vaccination rate (ρ ), which vary depending on 
simulation conditions and intervention strategies, were selected hypothetically to reflect plausible 
real-world scenarios. These distinctions allow the model to explore various policy interventions while 
remaining grounded in relevant data where available.

2.3.2. Parameter Values

Table 1: Parameter values used in the extended SEIR model for hMPV dynamics. 
Parameter Value / Range Description  Source 
β   0.3 – 0.6 Transmission rate  Zhu et al. (2020) [10] 
σ   1 / 3 Incubation rate (avg. incubation 

≈  3 days) 
 Feltes et al. (2003) [15] 

γ   1 / 7  Recovery rate (avg. infectious 
period ≈  7 days) 

 Devanathan et al. (2025) [9] 

κ   0.1 – 0.2 Co-infection rate  Modeling studies / average 
estimate 

ρ   0.02 Vaccination rate (daily)  Public health data 
(assumption) 

µ   0.00003 Birth/death rate (yearly 
≈1 / 36500 ) 

 Demographic data (average) 

δ   0.005 Disease-induced mortality rate 
(severe cases) 

 Feltes et al. (2003) [15] 

2.3.3. Initial Conditions

Table 2: Initial conditions for the extended SEIR model. 
 Variable  Initial Value 
Total population N   10000 
S(0)   9800 
E(0)   100  
I(0)  50  
C(0)   20  
R(0)  30  
V (0)   0  

3. Numerical Solution of the SEIR Model Using the Finite Difference Method

The SEIR model with co-infection and vaccination dynamics consists of a system of ordinary dif-
ferential equations (ODEs) that describe the temporal evolution of six population compartments: 
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Susceptible (S ), Exposed (E ), Infectious (I ), Co-infected (C ), Recovered (R), and Vaccinated (V ). 
Analytical solutions to such systems are challenging due to their nonlinear nature and the coupling 
between compartments. To overcome this, we employ the finite difference method (FDM), a numerical 
approach that provides approximate solutions by discretizing the time domain into small intervals.

We have explained in the manuscript that we solved ODEs for the extended SEIR using the for-
ward finite difference method. Time was discretized with the forward Euler rule, given that the reg-
ular time grid is appropriate to simulate the step-by-step temporal evolution of each compartment. 
This is a convenient choice and implies no immediate obligations, nor does it restrict the accuracy of 
the model, which, for shorter times, displays smooth behavior. The time step length was determined 
to satisfy numerical stability and convergence conditions [16].

3.1. Methodological Clarification of the Finite Difference Scheme

We use the explicit forward Euler scheme of the finite difference method (FDM) to solve the system of 
non-linear and coupled ODEs associated with the extended SEIR model. This method is well-suited 
for initial value problems that have continuous and smooth dynamics [16].

In the FDM framework, the continuous time domain [0, ]T  is discretized into N  subintervals of 
uniform length ∆t T N= / , where t n tn = ∆  denotes the discrete time levels for n N= 0,1,2, , . Each 
compartmental variable, such as the susceptible population S t( ) , is approximated at discrete time 
steps as S S tn n≈ ( ). The time derivatives in the system are then approximated using forward differ-
ences, such that: 

dS
dt

S S
tt tn

n n

=

1 .�
��

� (3.1)

By rearranging the above expression, we obtain the explicit update formula: 

S S t f S E I C R Vn n S n n n n n n� � �1 = ( , , , , , ),� (3.2)

where fS  denotes the right-hand side of the differential equation governing the evolution of the sus-
ceptible compartment, and is a function of the current values of all state variables.

The same scheme is applied to the remaining compartments E I C R, , , , and V , thereby transform-
ing the continuous system into an iterative sequence of algebraic updates. This approach allows us to 
simulate the time evolution of the entire population across compartments under different interven-
tion scenarios.

We selected the forward Euler method for the following reasons: 

•	 Simplicity and transparency: Its straightforward formulation facilitates reproducibility, 
making it accessible for use in public health simulations. 

•	 Computational efficiency: The method is computationally inexpensive, enabling fast simula-
tions over a wide range of parameter values. 

•	 Acceptable accuracy for small ∆t : For short-term epidemic modeling with moderately smooth 
dynamics, the method yields accurate results when the time step is sufficiently small. 

To ensure numerical stability and convergence, the time step ∆t  was chosen to be sufficiently small 
(e.g., ∆t = 0.1  days), based on empirical testing and established guidelines from the numerical analy-
sis literature.

In summary, the finite difference method, combined with the explicit Euler discretization, turns 
out to be an efficient, stable, and transparent numerical scheme for numerically studying the dynam-
ics of the extended SEIR model. This practice is also adopted in epidemic modeling and is a sound 
strategy for investigating co-infection and vaccination impacts.
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3.1.1. Clarification on Vaccination Rate (ρ )

In this study, we define the average (or moderate) vaccination rate as ρ = 0.02, which reflects typi-
cal vaccination rollout speeds in resource-limited settings with constrained infrastructure or supply 
chain limitations. To distinguish different levels of intervention, we classify: 

• Low vaccination: � � 0.005, corresponding to scenarios where immunization coverage is mini-
mal due to factors such as vaccine hesitancy or severe logistical obstacles. 

• Moderate vaccination: ρ = 0.02, reflecting a realistic yet suboptimal rollout. 
• High vaccination: � � 0.5 , simulating rapid, large-scale immunization campaigns. 

These classifications are used to compare the outcomes of different intervention strategies across 
our numerical simulations.

3.2. Scenarios Modeled

Three scenarios were designed to assess the impact of vaccination and other interventions:

1.	 Full Vaccination (Scenario 1): 
	 High vaccination rate (ρ = 0.5). Simulates rapid immunization campaigns to achieve herd 

immunity.
2.	 Current Scenario (Scenario 2): 
	 Moderate vaccination rate (ρ = 0.02). Reflects ongoing vaccination efforts in resource-constrained 

settings.
3.	 Early Eradication (Scenario 3): 
	 Extremely high vaccination rate (ρ = 0.9) and reduced transmission (β = 0.3 ). Represents a com-

prehensive response combining vaccination with non-pharmaceutical interventions. 

3.2.1. Vaccinated Population (V)

The growth of the vaccinated population is faster in Scenario 3 as a result of rapid and early vacci-
nation. Such a situation may be used to illustrate an intervention that is offensive, by which high 
vaccine coverage is reached relatively quickly, resulting in a rapid, massive increase in the proportion 
of immunized people. As Table 3 shows, this ramped-up vaccination campaign not only enhances pop-
ulation-level immunity but is very helpful in controlling disease transmission.

Figure 1: Vaccinated population over time under three different scenarios.
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On the other hand, in Scenario 1, a moderate speed of immunization is illustrated, the rate of 
which is constant, meaning it does not allow for the immediate change of epidemiological indica-
tors. Although some improvement has been observed, its performance is not on par with what was 
observed in Scenario 3.

As a comparison, in Scenario 2, an unsuccessful or late vaccination campaign resulted in slow prog-
ress in the number of people vaccinated. This delayed immunization also delays the opportunity to 
achieve herd immunity and undermines the overall efficacy of the intervention strategy.

3.2.2. Susceptible Population (S)

The susceptible population decreases the fastest in Scenario 3 due to high vaccination and reduced 
transmission. Scenario 1 also shows a steady decline, while Scenario 2 retains the largest susceptible 
group. A comparative summary of susceptibility reduction across the three scenarios is provided in 
Table 4.

Figure 2: Decline in the susceptible population over 60 days for all scenarios.

3.2.3. Recovered Population (R)

The recovered population grew steadily in all scenarios, reflecting the gradual development of immu-
nity over time. As illustrated in Figure 3, Scenario 3 leads to the most rapid and extensive recovery, 
primarily due to aggressive vaccination efforts and reduced transmission rates. Scenario 1 also shows 

Table 3: Vaccination impact across scenarios.
Metric Scenario One Scenario Two Scenario Three 
Final Vaccination 
Level 

High (50% of 
population) 

Low (20% of 
population) 

Very High (90% of 
population) 

Time to Stabilize 30 days 60 days 20 days 
Insights Rapid vaccination cam-

paigns were effective. 
Limited vaccination 
slowed epidemic 
control. 

Aggressive vaccination 
achieved the fastest 
resolution. 
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a significant increase in recovery, though at a slower pace, consistent with a moderate vaccination 
strategy. In contrast, Scenario 2 lags significantly, with a lower recovery rate and delayed stabiliza-
tion, indicating a prolonged epidemic course and insufficient immune protection in the population.

A comparative summary of these recovery outcomes, including final recovery levels and time to sta-
bilization, is presented in Table 5, emphasizing the strong correlation between vaccination intensity 
and epidemic resolution.

Figure 3: Recovery dynamics showing total recovered population under varying conditions.

Table 5: Recovery outcomes under different vaccination scenarios. 
Metric Scenario One Scenario Two Scenario Three 
Final Recovery Level High (70% of 

population) 
Moderate (40% of 
population) 

Very High (90% of 
population) 

Time to Stabilize 40 days 60 days 30 days 
Insights Effective vaccination 

increased immunity. 
Moderate recovery 
delayed epidemic 
resolution. 

Swift eradication maxi-
mized immunity early. 

Table 4: Decline in susceptible population across scenarios. 
Metric Scenario One Scenario Two Scenario Three 
Time to Significant 
Decline 

Rapid (<10 days) Moderate (30 days) Very Rapid (<5 days) 

Final Susceptible 
Count 

Low (20% of initial) High (50% of initial) Very Low (5% of 
initial) 

Insights High vaccination dras-
tically reduced suscep-
tible individuals. 

Slow vaccination left a 
substantial proportion 
unvaccinated. 

Combined interven-
tions almost eliminated 
susceptibility. 



Enver A, et al., Results in Nonlinear Anal. 8 (2025), 59–81.� 70

3.2.4. Infectious Population (I)

The infectious population exhibits a trend closely aligned with the exposed group, with Scenario 3 
achieving the most rapid and minimal peak due to aggressive vaccination and reduced transmission. 
Scenario 1 shows a moderate peak followed by a steady decline, indicating the benefits of a balanced 
immunization strategy. In contrast, Scenario 2 maintains a high level of infectious individuals for an 
extended duration, reflecting the impact of limited intervention efforts and slower epidemic control.

As demonstrated in Figure 4, these dynamics highlight the substantial differences in epidemic 
progression under varying vaccination strategies. A detailed comparison of the peak levels and the 
time taken to reach them is presented in Table 6, reinforcing the critical role of timely and intensive 
vaccination in minimizing infectious burden.

Figure 4: Infectious population over time under three vaccination scenarios.
Table 6: Peak infection dynamics under different vaccination strategies. 

Metric Scenario One Scenario Two Scenario Three 
Peak Level Moderate (5% of 

population) 
High (20% of 
population) 

Very Low (2% of population) 

Time to Peak 20 days  40 days 10 days 
Insights Effective vaccination 

reduced peak infection 
levels. 

High infections pro-
longed the epidemic. 

Aggressive measures achieved 
the lowest infectious levels. 

3.2.5 Exposed Population (E)

The exposed population responded notably to different vaccination strategies. Scenario 3, which com-
bines aggressive vaccination with reduced transmission, results in a rapid and substantial decline 
in the number of exposed individuals. In contrast, Scenario 2 shows a significantly slower decrease, 
indicating the consequences of inadequate intervention and delayed immunizations. Scenario 1 lies 
in between, producing moderate results consistent with a balanced approach.
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As illustrated in Figure 5, these differences reflect the impact of intervention intensity on exposure 
dynamics. A comparative summary of peak exposure levels and the timing of these peaks is provided 
in Table 7, emphasizing the importance of swift and comprehensive public health responses.

Figure 5: Exposed population over time under three vaccination scenarios.
Table 7: Exposure dynamics under varying vaccination strategies. 

Metric Scenario One Scenario Two Scenario Three 
Peak Level Moderate (10% of 

population) 
High (25% of 
population) 

Low (5% of population) 

Time to Peak  15 days  30 days  7 days 
Insights High vaccination flat-

tened the curve. 
Slow vaccination allowed 
sustained exposure. 

Early interventions nearly 
eliminated exposure. 

3.2.6. Co-Infected Population (C)

As illustrated in Figure 6, the co-infected population peaks early (around day 10) across all scenar-
ios, but the magnitude of the peak varies significantly with the intensity of interventions. Scenario 
3 (Early Eradication), which incorporates rapid vaccination and reduced transmission, results in the 
lowest and earliest peak, indicating effective suppression of the co-infection risk. Scenario 1 shows 
a slightly higher co-infection level, while Scenario 2 exhibits the highest co-infection burden due to 
delayed vaccination and extended epidemic duration.

These trends emphasize the need for timely public health responses to reduce the compounding 
impact of multiple infections. A detailed comparison of peak co-infection levels and their timing is 
provided in Table 8, underscoring the effectiveness of early and intensive intervention strategies in 
mitigating severe co-infection outcomes.
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Figure 6: Co-infected population over time under three vaccination scenarios.
Table 8. Co-infection outcomes across vaccination scenarios. 

 Metric Scenario One Scenario Two Scenario Three 
Peak Level Low (2% of 

population) 
Moderate (10% of 
population) 

Very Low (1% of population) 

Time to Peak 25 days 50 days 15 days 
Insights High vaccination mini-

mized co-infections. 
Prolonged outbreaks 
increased co-infection 
risks. 

Fast eradication prevented 
significant co-infections. 

3.3. Integration into Real-Life Context

Public Health Applications
1.	 Scenario 1 (Full Vaccination): 

-	 Suitable for pandemics where vaccine availability is high, and rapid deployment is feasible. 
2.	 Scenario 2 (Current Scenario): 

-	 Reflects resource-limited settings where vaccine supply and distribution face significant barriers. 
- 	 Emphasizes the need for supplementary measures like social distancing and masking. 

3.	 Scenario 3 (Early Eradication): 
- 	 Demonstrates the benefits of combining vaccination with behavioral interventions (e.g., 

lockdowns). 
- 	 Applicable in early containment phases to prevent large-scale outbreaks. 

The finite difference method enabled precise modeling of three intervention strategies, highlighting 
their impact on various compartments of the SEIR model. Scenario 3, combining aggressive vaccina-
tion and reduced transmission, proved the most effective in minimizing peak infections, co-infections, 
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and outbreak duration. These findings underscore the importance of timely, coordinated public health 
responses to mitigate the devastating effects of infectious diseases.

4. Simulation Results and Analysis

This section delves into the detailed simulation of the extended SEIR model incorporating co-infec-
tions (C ) and vaccinations (V ) for Türkiye’s population as of January 6, 2025 (N = 87,579,158 ). All 
plots in this section reflect absolute population values in each compartment rather than normalized 
scales. The simulations are performed using the finite difference method with a focus on evaluating 
the effects of different vaccination rates (ρ ) on the dynamics of the disease. The results are analyzed 
across six compartments: Susceptible (S ), Exposed (E ), Infectious (I ), Co-infected (C ), Recovered (R),  
and Vaccinated (V ).

Simulation Setup
•	 Timeframe: 60 days 
•	 Vaccination Rates Tested (ρ ): 

-	 Low (ρ = 0.02): Represents slow vaccination efforts, typical of limited healthcare resources or 
vaccine supply chain challenges. 

- 	 Moderate (ρ = 0.1): Reflects a reasonably paced vaccination campaign with adequate 
infrastructure. 

-	 High (ρ = 0.5): Simulates an aggressive vaccination strategy to curb the outbreak as quickly as 
possible. 

•	 Time Step: ∆t = 0.00001 days, ensuring precision in the finite difference calculations. 

4.1. Results and Observations

4.1.1. Susceptible Population (S)

As shown in Figure 7, the susceptible population decreases rapidly with higher vaccination rates. At 
ρ = 0.5, a considerable proportion of individuals transition out of the susceptible compartment early, 
reducing the risk of transmission. Lower vaccination rates (ρ = 0.02) maintain a larger susceptible 
population throughout the simulation, prolonging the epidemic’s duration.

Figure 7: Susceptible population under different vaccination rates (ρ = 0.02,0.1,0.5).



Enver A, et al., Results in Nonlinear Anal. 8 (2025), 59–81.� 74

4.1.2. Exposed Population (E)

As shown in Figure 8, for ρ = 0.5, the exposed population quickly peaks and diminishes, as the high 
vaccination rate interrupts the infection cycle. Lower vaccination rates (ρ = 0.02) result in a pro-
longed exposed period, allowing the disease to spread further before containment.

Figure 8: Exposed population under different vaccination rates (ρ = 0.02,0.1,0.5).

4.1.3. Infectious Population (I)

As shown in Figure 9, the infectious population is minimized most effectively at higher vaccination 
rates. At ρ = 0.5, the infectious curve peaks early and drops significantly, reflecting the successful 
prevention of secondary infections.

At ρ = 0.02, the infectious peak is delayed and larger, increasing the burden on healthcare systems.

Figure 9: Infectious population under different vaccination rates (ρ = 0.02,0.1,0.5).
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4.1.4. Co-infected Population (C)

Co-infection dynamics mirror those of the infectious population but with slightly prolonged peaks due 
to compounded infection rates. Higher vaccination rates (ρ = 0.5) significantly reduce the co-infected 
peak, limiting the potential for severe health outcomes associated with multiple infections.

Figure 10: Co-infected population under different vaccination rates (ρ = 0.02,0.1,0.5).

4.1.5. Recovered Population (R)

As shown in Figure 11, recovery is faster and more substantial with higher vaccination rates. At 
ρ = 0.5, the recovered population stabilizes earlier, signaling an earlier end to the epidemic. At 
ρ = 0.02, recovery is delayed, prolonging the active phase of the epidemic.

Figure 11: Recovered population under different vaccination rates (ρ = 0.02,0.1,0.5).
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4.1.6. Vaccinated Population (V)

As shown in Figure 12, the vaccinated population grows at a rate proportional to ρ = 0.5. In this case, 
the entire population is vaccinated within the simulation timeframe, demonstrating the potential to 
achieve herd immunity. At ρ = 0.02, the vaccinated population grows slowly, delaying the epidemic’s 
resolution.

Figure 12: Vaccinated population under different vaccination rates (ρ = 0.02,0.1,0.5).

4.2. Estimated Epidemic Control Durations

Based on the simulation results and real-world implications, the duration to control the epidemic 
(defined as the time it takes for the infectious and co-infected populations to reduce to near-zero 
levels) can be estimated as follows for different vaccination rates:

Low Vaccination Rate (ρ = 0.02)
•	 Estimated Duration: 50–60 days. 

• With slow vaccination efforts, the epidemic persists for almost two months. 
• The infectious and co-infected populations take longer to peak and decline, maintaining a pro-

longed burden on the healthcare system. 
• Herd immunity is delayed due to insufficient vaccination coverage over time. 

Moderate Vaccination Rate (ρ = 0.1)
•	 Estimated Duration: 35–40 days. 

•	 Moderate vaccination rates result in a shorter epidemic duration compared to ρ = 0.02. 
•	 The exposed, infectious, and co-infected populations reach their peaks earlier and decline faster. 
•	 While effective, this strategy still leaves room for improvement in reducing the epidemic’s total 

duration and impact. 
High Vaccination Rate (ρ = 0.5)

•	 Estimated Duration: 20–25 days. 
•	 With aggressive vaccination efforts, the epidemic can be controlled within three weeks to a 

month. 
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•	 The infectious and co-infected populations exhibit low peaks, and herd immunity is achieved 
quickly. 

•	 This scenario significantly reduces strain on healthcare systems and ensures rapid restoration 
of societal and economic activities. 

5. Discussion

1- Recent studies on epidemic modeling have emphasized the critical role of spatial heterogeneity and 
diffusion dynamics in shaping the spread of infectious diseases. For instance, the study on the stabil-
ity and spatial profiles of a double age-dependent diffusive viral infection model with spatial hetero-
geneity demonstrates how demographic structures and spatial variations can significantly influence 
epidemic trajectories and long-term stability. Their findings highlight that incorporating both age 
dependence and spatial diffusion yields richer dynamics and more realistic stability conditions com-
pared to traditional homogeneous models.

In the context of our extended SEIR framework for hMPV, this perspective underscores the novelty 
of our approach. By explicitly including compartments for co-infection and vaccination, our model 
moves beyond the classical single-pathogen, homogeneous assumption and captures real-world com-
plexities of respiratory epidemics. In particular, the co-infection compartment illustrates how overlap-
ping viral infections can exacerbate epidemic severity, while the vaccination compartment provides a 
direct mechanism to evaluate the effectiveness of immunization campaigns. Together, these features 
make the model more biologically relevant and better suited for guiding public health interventions.

Moreover, our simulation results demonstrate that vaccination intensity plays a decisive role in 
epidemic duration, recovery dynamics, and co-infection outcomes. When interpreted alongside studies 
that integrate spatial heterogeneity, our findings suggest that future extensions of the hMPV model 
could benefit from incorporating both spatial dispersion and demographic stratification. Such integra-
tion would provide even deeper insights into how vaccination campaigns and co-infection dynamics 
interact under heterogeneous population structures, ultimately improving predictive capacity and 
informing policy decisions [17].

2- Recent advances in reaction-diffusion epidemic models have further highlighted the importance 
of spatial heterogeneity in determining long-term epidemic outcomes. For example, the study on the 
asymptotic profiles of a generalized reaction-diffusion SIS epidemic model with spatial heterogene-
ity demonstrates that the spatial distribution of susceptible and infectious individuals can strongly 
influence persistence, extinction, and equilibrium states of an epidemic. Their analysis shows that 
diffusion-driven mechanisms may generate heterogeneous steady states, which are fundamentally 
different from those predicted by spatially homogeneous models.

In the framework of our extended SEIR model for hMPV, these findings provide additional context 
to the novelty of our contribution. While our model emphasizes co-infection and vaccination dynam-
ics, incorporating insights from reaction-diffusion SIS models suggests that future extensions should 
also account for spatial heterogeneity. By integrating spatial dispersion with co-infection dynamics, 
it would be possible to capture localized epidemic clusters, spatial vaccination effects, and the het-
erogeneous impact of interventions. Such extensions would further enhance the predictive power of 
the model and align it with the growing body of literature emphasizing the interplay between space, 
diffusion, and epidemic stability [18].

3- Another relevant contribution in the literature is the study on the dynamics and asymptotic 
profiles of a local–nonlocal dispersal SIR epidemic model with spatial heterogeneity. This work shows 
that combining local diffusion with nonlocal dispersal mechanisms provides a more comprehensive 
understanding of how infectious diseases spread across heterogeneous environments. Their results 
indicate that nonlocal dispersal, which accounts for long-range movements of individuals, can signifi-
cantly modify both the persistence thresholds and asymptotic profiles of epidemic solutions compared 
to purely local models. Such findings highlight the necessity of incorporating multiple spatial scales 
when analyzing epidemic stability and long-term dynamics.
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Within the scope of our extended SEIR framework for hMPV, these insights are particularly valu-
able. While our model emphasizes vaccination and co-infection, integrating local and nonlocal disper-
sal in future extensions would enable the analysis of scenarios where human mobility patterns, such 
as international travel or interregional movement, strongly affect epidemic outcomes. This perspective 
further strengthens the novelty of our work, as it opens the door for developing a more realistic, multi-
scale epidemic modeling approach that can provide deeper guidance for public health interventions.

4- The study on the diffusive SIS epidemic model in a heterogeneous environment: random disper-
sion vs. nonlocal dispersion provides further insights into the role of dispersal mechanisms in shaping 
epidemic dynamics. The authors show that random diffusion, which represents short-range and local 
movements, and nonlocal dispersion, which accounts for long-range connections, can lead to mark-
edly different persistence thresholds and asymptotic states. In particular, nonlocal dispersion tends 
to accelerate disease spread across heterogeneous environments, while random diffusion may localize 
infections and limit their long-term prevalence. These results emphasize the necessity of explicitly 
considering the type of dispersal process when designing epidemic models.

For our extended SEIR framework of hMPV, such findings suggest an important avenue for future 
work. While our model already improves realism through vaccination and co-infection dynamics, 
incorporating both random and nonlocal dispersal would allow us to capture the interplay between 
localized outbreaks (e.g., within communities) and rapid, long-distance transmission (e.g., through 
international travel). This dual perspective would strengthen the predictive capacity of the model, 
ensuring that it reflects the multi-scale spread patterns observed in real epidemics, and thereby 
enhancing its value for public health policy and intervention planning.

5- The study on the dynamics of a spatiotemporal SIS epidemic model with distinct mobility range 
highlights the importance of considering heterogeneous mobility behaviors in epidemic modeling. The 
authors demonstrate that populations with varying movement ranges, such as individuals restricted 
to local interactions versus those capable of long-distance travel, exhibit fundamentally different epi-
demic trajectories. Distinct mobility ranges not only affect the speed of disease propagation but also 
influence the persistence and stability of infection levels across space and time. Such results under-
score the necessity of explicitly incorporating mobility heterogeneity into mathematical models to 
achieve realistic predictions.

In the context of our extended SEIR framework for hMPV, this perspective is particularly relevant. 
While our model already captures vaccination and co-infection dynamics, integrating distinct mobil-
ity ranges would allow for a more precise simulation of real-world scenarios where some groups (e.g., 
children in schools, elderly populations in care facilities) have limited movement, while others (e.g., 
working-age adults, international travelers) contribute to rapid, long-range transmission. Accounting 
for these differences could substantially enhance the model’s predictive capacity and help refine tar-
geted intervention strategies by identifying population groups whose mobility patterns play a dispro-
portionate role in epidemic spread.

6- The study on the asymptotic profiles of a generalized reaction-diffusion SIS epidemic model 
with spatial heterogeneity provides further theoretical depth to understanding epidemic persistence 
and extinction. The authors show that spatial heterogeneity and reaction-diffusion mechanisms can 
generate complex asymptotic profiles, where infection does not simply stabilize to a uniform state but 
may converge to spatially structured equilibria. These heterogeneous steady states highlight the lim-
itations of classical homogeneous SIS models and emphasize the role of spatial variability in shaping 
long-term epidemic outcomes.

For our extended SEIR framework of hMPV, these insights underline the relevance of extending 
the model beyond standard assumptions. While our framework incorporates vaccination and co-in-
fection to capture biological complexity, considering reaction-diffusion structures in future extensions 
would allow for the analysis of how spatial heterogeneity influences co-infection prevalence and vac-
cination efficiency. Such an approach would not only improve the predictive power of the model but 
also provide richer mathematical insights into the interplay between spatial dispersion, disease per-
sistence, and control interventions.
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7- The study on the dynamics of a generalized nonlocal dispersion SIS epidemic model highlights 
the profound impact of long-range dispersal on epidemic outcomes. Unlike purely local diffusion pro-
cesses, nonlocal dispersion allows individuals to interact across distant regions, thereby accelerating 
transmission and altering stability thresholds. The authors demonstrate that incorporating general-
ized nonlocal mechanisms can significantly influence whether an infection persists, dies out, or stabi-
lizes at non-uniform equilibria. These results stress the importance of considering mobility structures 
that extend beyond local neighborhoods when constructing epidemic models.

In the context of our extended SEIR model for hMPV, these findings are particularly relevant for 
future directions. Although our framework focuses on vaccination and co-infection dynamics, inte-
grating nonlocal dispersal would allow for a more realistic representation of modern mobility pat-
terns, such as air travel or intercity commuting, which often play decisive roles in respiratory virus 
epidemics. Combining such mobility-driven mechanisms with vaccination strategies could further 
enhance the predictive power of the model and provide deeper insights for designing public health 
interventions.

8- Graph C exhibits oscillatory dynamics rather than a monotonic convergence to equilibrium. This 
behavior occurs because the chosen parameter set positions the system near the instability threshold, 
where interactions between susceptible replenishment and infection transmission generate recur-
rent waves. From a biological perspective, these oscillations may represent repeated epidemic peaks 
driven by insufficient vaccination coverage and the compounding effects of co-infection. Such recur-
rent waves emphasize the importance of timely interventions, as inadequate control efforts may pro-
long epidemic duration and increase healthcare burden.

6. Conclusion

In this study, we employed an extended SEIR model incorporating vaccination rates and co-infec-
tion dynamics to provide valuable insights into controlling and mitigating human metapneumovirus 
(hMPV) outbreaks. The findings underscore the significant impact of different vaccination strate-
gies on epidemic trajectory and highlight the importance of targeted interventions, particularly in 
addressing the risks posed by co-infection.

Figures 1 through 12 illustrate the dynamic behavior of each compartment in response to different 
vaccination strategies, including full, moderate, and early eradication scenarios. Notably, Figure 1 
shows that aggressive vaccination efforts lead to rapid increases in the vaccinated population, while 
Figure 2 and Figure 4 highlight sharp declines in susceptible and infectious populations, respec-
tively. Co-infection trends (Figure 6 and Figure 10) emphasize the importance of early intervention. 
Furthermore, Table 1 summarizes the key parameter values used in the simulations, and subsequent 
scenario tables compare critical epidemic outcomes such as peak infection levels and time to stabili-
zation across strategies. These visual results strongly support the effectiveness of integrated vaccina-
tion policies and validate the proposed model’s predictive capability.

Key Findings and Implications

Vaccination as the Cornerstone of Control 
•	 High Vaccination Rate (ρ = 0.5): This scenario shows the swiftest decline in the susceptible 

population, achieving epidemic control in approximately 20–25 days. Rapid attainment of herd 
immunity substantially eases the burden on healthcare systems. 

•	 Moderate Vaccination Rate (ρ = 0.1): Epidemic control takes longer (around 35–40 days) to 
stabilize, resulting in higher peaks for infected and co-infected individuals compared to aggres-
sive vaccination. 

•	 Low Vaccination Rate (ρ = 0.02): Extends the epidemic to 50–60 days, indicating the need for 
robust vaccination campaigns even in resource-limited settings. 
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Role of Co-Infection
Co-infection dynamics illustrate the compounded risks when multiple pathogens circulate simul-

taneously. High vaccination rates not only minimize primary infections but also substantially reduce 
co-infection rates, mitigating severe outcomes among vulnerable groups.

Recovered Population Dynamics
Aggressive vaccination strategies lead to rapid recovery, with up to 90% of individuals eventually 

recovering in high vaccination scenarios. This significantly reduces the likelihood of recurrent out-
breaks, facilitating long-term disease control.

Policy Recommendations 
•	 High Vaccination Coverage: Swift immunization campaigns focusing on high-risk groups 

such as children, the elderly, and those with comorbidities can markedly lower morbidity and 
mortality. 

•	 Integrated Approaches: When vaccination rates are moderate or vaccine distribution is 
delayed, combining vaccination with non-pharmaceutical interventions (e.g., mask mandates, 
social distancing) is critical. 

•	 Healthcare System Preparedness: To prevent overburdening healthcare facilities during 
peak infection periods, policymakers should allocate resources and workforce efficiently. 

7. Real-World Applications

This research highlights the importance of tailored vaccination strategies across regions with varying 
healthcare infrastructures:

• 	 High-Income Countries: Attaining ρ = 0.5 is feasible through robust vaccine distribution, 
enabling epidemic control in under a month. 

• 	 Resource-Limited Settings: Where ρ = 0.02 is more realistic, additional measures (e.g., public 
education, isolation protocols, international vaccine support) are indispensable. 

• 	 Genomic Surveillance and Co-Infection Monitoring: Early warning systems that track cir-
culating strains and co-infection patterns enable timely interventions, reducing the overall dis-
ease burden. 

Broader Public Health Perspective

The extended SEIR model clearly demonstrates that well-coordinated and aggressive vaccination 
efforts can significantly improve public health outcomes during hMPV outbreaks. By shortening the 
duration and reducing the severity of the epidemic, such strategies not only save lives but also restore 
societal and economic functions more quickly. These findings apply to other respiratory pathogens 
with comparable transmission and co-infection patterns. By incorporating these lessons into public 
health planning, we can enhance our preparedness and resilience against future infectious disease 
outbreaks and pandemics.
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