
Results in Nonlinear Analysis 8 (2025) No. 2, 148–153
https://doi.org/10.31838/rna/2025.08.02.013
Available online at www.nonlinear-analysis.com

Received April 7, 2025; Accepted May 19, 2025; Online June 30, 2025

Optimization of ordinary differential equations (ODE)
solutions using modified recurrent neural networks
Aseel Najih Abbas Hassan Al-Maamouri

University of Al-Mustansiriya, College of Administration and Economics, Department of Information Technology

Abstract
This paper introduces a hybrid approach for solving ordinary differential equations (ODE) using mod-
ified recurrent neural networks (mRNNs). The approach combines mRNNs with novel optimization
techniques. Crucially, when training an mRNN, training data points should be selected from the open
interval (a, b) to avoid training the network with the boundary points. This approach reduces compu-
tational errors by avoiding boundary region training. Furthermore, we propose a transformation that
maps training points from a potentially broader interval [a, b] into corresponding points within the
open interval (a, b), before training. This allows the network to be trained on points that are similar
in the open interval, which leads to improved accuracy. The proposed model demonstrates higher
accuracy compared to existing mRNN models. A numerical example and corresponding simulations
demonstrate the mathematical effectiveness of this approach.
Mathematics Subject Classification (2020): 65L05, 68T07, 93A30
Key words and phrases: S-Curve Function; Modified Recurrent Neural Networks (mRNN); Ordinary
Differential Equations (ODE); Alternative Activation Function (AAF); Identity Function (IdFn).

Email address: al9625510@gmail.com (Aseel Najih Abbas Hassan Al-Maamouri)

1. Introduction

Differential equations are fundamental tools across numerous disciplines, including physics, chemis-
try, mechanics, and economics, providing a framework for problem-solving. Many real-world problems
and natural phenomena can be modeled using differential equations. Solving these equations enables

Hassan Al-Maamouri ANA, Results in Nonlinear Anal. 8 (2025), 148–153. 149

us to describe and predict the behavior of these systems [1]. However, many differential equations
lack analytical solutions, or their solutions are difficult to interpret. Consequently, various numerical
algorithms have been developed to approximate solutions, such as Runge-Kutta, Adomian, Adams-
Bashforth, Adams-Moulton, and Predictor-Corrector methods. More recently, neural networks have
emerged as a powerful technique for approximating solutions to ODEs, partial differential equations
(PDEs), and fuzzy differential equations (FDEs). As early as 1990, Lee and Kang demonstrated the
use of Hopfield neural networks with parallel processing to solve first-order differential equations [2].
Later, Meade and Fernandez employed feed-forward neural networks combined with degree-one
B-splines to tackle both linear and nonlinear ODEs. However, scaling these methods to multidimen-
sional problems presents a significant challenge [3]. In contrast, a numerical technique proposed by
Malek, Shekari, and Jamme, building upon work by Jamme and Liu, utilizes neural networks and
optimization methods to approximate solutions to higher-order differential equations. This method
seeks a solution as a combination of two analytical functions: one satisfying initial/boundary condi-
tions, and the other incorporating parameters within the neural network [4]. The hidden layer of the
neural network typically employs an activation function (AAF), often a sigmoid or hyperbolic tangent
function. This paper is structured into five sections. Section 2 provides foundational definitions and
theorems necessary for understanding the methodology. Section 3 introduces the proposed model for
solving ordinary differential equations. Section 4 presents illustrative examples, and Section 5 offers
concluding remarks.

2. Backgrounds

2.1 The S-curve function

S-curves are also known as Logistic Function, which depict patterns of gradual growth at the begin-
ning, rapid acceleration midway, and leveling off near the end of a project. An S-shaped graph is often
used to visualize the progress of a project over time, such as in project management, where cumula-
tive data such as cost or hours worked are tracked [5, 6].

2.2 Activating Functions

The activation function in a RNN is used for limiting the output neurons in the network. A combina-
tion of IdFn and AAF was used in this paper. RNN algorithm is introduced that uses one conversion
function [7, 8].

2.3 Multilayer Perceptron Network Training (MLP Network Training)

RNN training utilizes backpropagation (BP), an error correction method. This requires calculating
derivatives of the neuron activation functions to determine sensitivities across the multi-layer percep-
tron (MLP) network [9]. Therefore, differentiable activation functions are necessary. We previously
covered the characteristics of activation functions (specifically AAF), and the following sections will
detail the error function [10].

2.4 Tools for Building World Approximations

A multilayer perceptron (MLP) with one hidden layer, using an S-curve activation in the hidden layer
and a linear output layer, can approximate any continuous function to any desired degree of accuracy.
The quality of this approximation is measured by the integral of the squared error [6, 11].

3. Motivation

This work aims to present a hybrid two-layer RNN method for solving ODEs. The approach involves
increasing the dimensionality of the input data and employing optimization techniques. The RNN,

Hassan Al-Maamouri ANA, Results in Nonlinear Anal. 8 (2025), 148–153. 150

initially developed for function approximation, is adapted for ODE solutions. The initial weights of
the two-layered network model are randomly initialized.

4. Problem Statement

An initial value differential equation with a first-order value:

dy x
dx

f x y x x a b

y z a

� �
� � � �� ��

� � �

�

�
�

�
�

�

�
�

�
�

(, , , ,

,

(1)

Trial functions can be expressed in the form below:

y x y x a N x pT , ,� � � � �� � � �� (2)

This function is composed of two separate sections. The first section establishes the initial condi-
tion, and the second integrates a neural network with adjustable parameters. The error minimization
process follows a specific pattern:

E p
dy x p

dx
f x y p

i

m
T i

i i� � � � ��

�
��

�

�
�� � �

�
��

,
, ,�)

1

2

(3)

A discrete point with coordinates []ui i
n
�
�
0
1 belongs to the interval [a, b]. In (3), we get the following

result when we differentiate from trial function y x pT i ,� �
d x p
dx

N x p x a
dN x p
dx

yT ,
,

,� �
� � � � �� � � �

(4)

Because the derivatives of the Activation Approximation Functions (AAFs) used in feed-forward
networks and S-curves are directly linked to the transformation function’s value, differentiation is not
required [12]. This characteristic makes AAFs useful in the hidden layers of neural networks. While
less precise than functions like the Sech function [4, 13], AAFs offer flexibility. Our proposed mRNN
model uses a single hidden layer with AAFs and an Identity Function (IdFn) in the output layer. The
key advantage lies in the capacity to choose activation functions (AAFs) within the hidden layer, allow-
ing for precise control over the accuracy achieved. Our model offers a simpler alternative to existing
neural network methods for solving ordinary and fuzzy differential equations. These current methods
frequently rely on complex architectures to reach comparable accuracy. In our model, wj represents
the weight connecting the input to the jth hidden unit, vj represents the weight from the jth hidden
unit to the output, bj is the bias for the jth hidden unit, and nj is the output of that unit. Building on
this, Equation (4) defines N(x, P) and its derivative, dN(x,p)/dx [1, 15].

N VjS nj
j

H

� � �
�
�

1
(5)

S nj
e e

nj wjQ x bjnj nj� � �
�

� � � ��

2 ,� (6)

So that,

Q x x� � � �� � �� �1 0 1� �,� � , (7)

Therefore,

Hassan Al-Maamouri ANA, Results in Nonlinear Anal. 8 (2025), 148–153. 151

Q x a b� ��� �� ,� (8)

The training process involves selecting points based on their similarity within the open interval (a,
b). First, points similar to those in (a, b) are transformed, and then a neural network is trained using
these transformed points, considering the distance represented by the interval [a, b] [16].

dN
dx

v w S n v w
e e

j

H

j j j
j

H

j j

wjQ x bj wjQ x bj

� � � �
� �� �

�
�

� �� � � ��

� �
1

2 � � � �

ee ewjQ x bj wjQ x bj� � � �)� �� � � ��� 2

(9)

Based on the interpretations described in (5) and (9), (3) can be rewritten in the following form:

E p xi a v w
e e

i

m

j

H

j j

wjQ xi bj wjQ xi bj

� � � �� �
� �� �

� �

� �� � � ��

� �
1 1

2
(

� � � �

ee ewjQ xi bj wjQ xi bj� � � �)� �� � � ��� 2
(10)

�
�

� � �
�

� �� � � ���
j

H

j wjQ xi bj wjQ xi bjv
e e

f xi yi xi p
1

22
� � � � (, � ,)

5. Numerical results and discussion

5.1 Numerical Examples

This section details the behavior and properties of the new method. A single example is used to dis-
cuss the simulation results. The simulation was conducted on Matlab 2012 [17]. Randomly selected
weights were used as the initial weights.

dy x
dz

x x x

y

� �
� � � � �� ��

� � �

�

�
�

�
�

�

�
�

�
�

4 3 2 0 1

0 0

3 2. ,� ,

(11)

It is clear from the solution to (7) that y(x) is the product of :

y x x x x� � � � �4 3 2 (11)

The trail solution can be summed up as follows:

y x xN x p x
e eT

j

H

wjQ xi bj wjQ xi bj� � � � � �
��

� �� � � ���, � � � �
1

2

(12)

In this case, the error function will take the following form:

E p v
e e

v wj
i

m

j

H

j wjQ xi bj wjQ xi bj
j

H

j� � �
�

�
�

� �
� �� � � ��

�
� � �
1 1 1

2(� � � �

22 e e

e e

wjQ xi bj wjQ xi bj

wjQ xi bj wjQ xi b

� � � �

� � �

� �� � � ��

� �� � � ��

�� �
� jj x x�)

)
2

3 2 24 3 2� � �� � (13)

This example demonstrates training an error function with a neural network that includes a hidden
layer of 5 AAF units. The training will use “ = 0.4 and m = 6, representing 6 equally spaced points
within the interval [0, 1]. Table 1 displays the optimal weights and biases obtained from this training.
Table 2 presents the values of both the analytical solution and the trial function. Finally, Figure 1
illustrates the transient behavior of the model in relation to changes in its weights and biases.

There are several ways in which a network’s E(p) error can be expressed. For example, a network’s
E(p) error would be: 2.7557e 07. From that value, it would be : 2.7557e 0.007.

Hassan Al-Maamouri ANA, Results in Nonlinear Anal. 8 (2025), 148–153. 152

Table 1: Shows an optimal weighting and biasing formula the optimal
values of weights and biases.

Version No. Ver_No.1 Ver_No.2 Ver_No.3 Ver_No.4 Ver_No.5
Vi 4.0386 3.5615 -0.7124 8.5625 5.0682

Wi 3.606 7.0895 3.1273 -3.6432 6.7945

bi 0.3072 3.3185 1.2374 7.4252 8.7846

Table 2: Illustrates the comparison between the precise solution (ya) and its approx-
imation (yt).

Version No. Ver_No.1 Ver_No.2 Ver_No.3 Ver_No.4 Ver_No.5 Ver_No.6
xi 0 1.2231 1.4231 1.6231 1.8231 2.0231

yi 0 1.4167 1.7847 2.1366 2.5207 3.023
ya 0 1.4167 1.7847 2.1367 2.5207 3.0231

Figure 1: A formula for determining the optimal weights and biases.

Figure 2: The algorithm computes the deviation of the approximate solution (yt) from the precise
solution (ya).

Figure 1, A formula for determining the optimal weights and biases

-5

0

5

10

15

20

25

Iteration
No.

1st
Iteration

2nd
Iteration

3rd
Iteration

4th
Iteration

5th
Iteration

Series3

Series2

Series1

0

1

2

3

4

5

6

7

8

9

Iteration
No.

1st
Iteration

2nd
Iteration

3rd
Iteration

4th
Iteration

5th
Iteration

6th
Iteration

Series3

Series2

Series1

Figure 1, A formula for determining the optimal weights and biases

-5

0

5

10

15

20

25

Iteration
No.

1st
Iteration

2nd
Iteration

3rd
Iteration

4th
Iteration

5th
Iteration

Series3

Series2

Series1

0

1

2

3

4

5

6

7

8

9

Iteration
No.

1st
Iteration

2nd
Iteration

3rd
Iteration

4th
Iteration

5th
Iteration

6th
Iteration

Series3

Series2

Series1

Hassan Al-Maamouri ANA, Results in Nonlinear Anal. 8 (2025), 148–153. 153

Conclusion

The derivatives of the activation functions (AAFs) in RNNs (Recurrent Neural Networks) and S-Curves
are directly determined by the transformation function itself, so we don’t need to differentiate them
separately. The Sech activation function, although a possibility for hidden layers in neural networks,
generally yields lower accuracy compared to alternatives like the exponential secant. However, our
research demonstrates that using our modified neural network architecture from Section 3, the desired
accuracy can be regained even with Sech in the hidden layer. This approach allows us to achieve sim-
ilar accuracy to standard neural networks when tackling ordinary and fuzzy differential equations.

References
[1] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from

tensorflow.org.
[2] A. Bachouch et al., Deep neural networks algorithms for stochastic control problems on finite horizon: Numerical

applications, arXiv:1812.05916, 2020.
[3] C. Basdevant et al., Spectral and finite difference solutions of the Burgers equation, Comput. & Fluids 14 (1986),

23–41.
[4] A. G. Baydin et al., Automatic differentiation in machine learning: A survey, J. Mach. Learn. Res. 18 (2018), 43 Paper

No. 153.
[5] C. Beck and A. Jentzen, Machine learning approximation algorithms for high-dimensional fully nonlinear partial differ-

ential equations and second-order backward stochastic differential equations, J. Nonlinear Sci. 29 (2019), 1563–1619.
[6] C. Beck et al., Solving stochastic differential equations and Kolmogorov equations by means of deep learning,

arXiv:1806.00421, 2018.
[7] C. Beck et al., Deep splitting method for parabolic PDEs, arXiv:1907.03452, 2019.
[8] C. Beck et al., Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differ-

ential equations via truncated full-history recursive multilevel Picard approximations, J. Numer. Math. 28 (2020),
197–222.

[9] C. Beck et al., An overview on deep learning-based approximation methods for partial differential equations,
arXiv:2012.12348, 2020.

[10] R. Bellman, Dynamic programming, Princeton University Press, Princeton, NJ, 1957.
[11] J.-D. Benamou, B. D. Froese, and A. M. Oberman, Two numerical methods for the elliptic Monge-Ampère equation,

M2AN. Math. Modell. Numer. Anal. 44 (2010), 737–758.
[12] C. Bender and R. Denk, A forward scheme for backward SDEs, Stochastic Process. Appl. 117 (2007), 1793–1812.
[13] C. Bender, N. Schweizer, and J. Zhuo, A primal–dual algorithm for BSDEs, Math. Finance 27 (2017), 866–901.
[14] P. Beneventano et al., High-dimensional approximation spaces of artificial neural networks and applications to partial

differential equations, arXiv:2012.04326, 2020.
[15] Y. Bengio, Learning deep architectures for AI, Now Publishers Inc., 2009.
[16] J. Berg and K. Nyström, A unified deep artificial neural network approach to partial differential equations in complex

geometries, Neurocomputing 317 (2018), 28–41.
[17] J. Berner, M. Dablander, and P. Grohs, Numerically solving parametric families of high-dimensional Kolmogorov par-

tial differential equations via deep learning, Adv. Neural Inform. Process. Syst. 33 (2020).

