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Abstract
The modelling and Analysis of nonlinear systems under uncertainty are particularly difficult in sci-
entific and engineering discipline. In many problems involving real world complex data, the inher-
ent indeterminacy, vagueness and partial truth value associated with various real world complex 
phenomena is difficult to effectively capture using traditional frameworks. This study presents a 
novel nonlinear dynamic modelling framework based on Eigen Neutrosophic Z-Set and Neutrosophic 
 Z-Relations framework to systematically handle the above challenges. The mathematical foundations 
of Neutrosophic Z sets are set up and discrete time dynamical systems given by Neutrosophic rela-
tional compositions are formulated. Properties of stability are rigorously analysed and proofs that 
convergence to fixed point eigen structures are derived. Details are presented of computational algo-
rithms for determining Greatest Eigen Neutrosophic Z-Set (GENZS) and Least Eigen Neutrosophic 
Z-Set (LENZS). The theoretical framework is validated through the simulations on representative 
systems in which the numerically generated solutions accommodate the fast convergence and retain 
the stability of the systems under variation of the uncertainty conditions. The proposed approach 
provides a powerful and general means of modelling the nonlinear systems subject to uncertainty and 
could be applied, for example, in the area of engineering design, decision making systems and complex 
socio-economic modelling.
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1. Introduction

Nonlinear systems are common in all important branches of engineering, physics, economics, and the 
social sciences. Yet such systems often show highly complex and behavior, very sensitive to initial 
condition, external perturbation and internal nonlinear interaction. In practice, however, uncertainty 
pervades such systems and constitutes a critical source of challenge in their modeling as it arises from 
the fluctuating information, imprecise measurements, uncertainty quantifiable in random variables, 
and an evolving environment.

By applying traditional mathematical approaches, such as deterministic dynamical systems and 
probabilistic framework, it has been possible to model some aspect of nonlinear behavior. Nevertheless, 
most of these methods are deficient when confronted by real systems exhibiting partial truth values, 
indeterminacy, and vague information. The classical models basically have well defined input param-
eters and boundary conditions, thus making them incapable to handle varying degrees of uncertainty 
in a explicit manner. However, the limitation makes them a poor choice for prediction in uncertain 
and dynamic environments, as their predictive accuracy is greatly limited and spaces of robustness 
and practical applicability are significantly restricted.

In order to solve these problems, the neutrosophic sets, which are generalized form of fuzzy sets, 
provide the solid mathematical framework for representing and manipulating indeterminate, inconsis-
tent and incomplete information. Based on this root we suggest a new perspective nonlinear dynamic 
modelling setting based on Eigen Neutrosophic Z-Set and Neutrosophic Z-Relation. Moreover, this 
approach is also able to capture dynamic system behaviors and integrate uncertainty into the evolu-
tion process of the system due to its ability to provide a more realistic and complete picture of nonlin-
ear phenomena.

The main contributions given by this paper are:
• Formalization of the mathematical foundations of Neutrosophic Z-Sets and Z-Relations.
• Neutrosophic compositions for development of discrete time nonlinear dynamic models with 

uncertainty.
• Stable system analysis and convergence analysis, summarized proof of fixed point behavior.
• Computational algorithms for the finding the Greatest Eigen Neutrosophic Z-Set (GENZS) and 

Least Eigen Neutrosophic Z-Set (LENZS) are presented.
• Validation of the proposed framework through numerical simulations and discussion of potential 

real-world applications.
The paper is structured as follows: In section 2, the mathematical preliminaries are presented and 

illustrative examples are given. The nonlinear dynamic modelling based on Neutrosophic Z Sets is 
introduced in Section 3. The stability analysis and convergence proofs are given in Section 4. Section 
5 details the computational algorithms for GENZS and LENZS determination. Section 6 discusses 
simulation results. Section 7 elaborates on how this might be applied in other context and possible 
future extensions. Last, Section 8 ends with a summary of key findings.

2. Preliminaries and Mathematical Foundations

A robust mathematical framework needed for modeling of nonlinear dynamic systems under uncer-
tainty must be able to take care of indeterminacy, partial truthness, and incompleteness information. 
Probabilistic as well as fuzzy set-based models, which have been often used in the past, are not able 
to fully capture the complexities of the problem. In this section, we introduce the basic concepts that 
are used for developing the proposed neutrosophic dynamic modeling framework.

Zadeh [1] introduced the notion of Z-numbers which is a powerful representation of the uncertain 
information as a combination of a constraint (a fuzzy restriction) and a reliability measure. A richer 
modeling of real-world uncertainties is provided by this dual representation and this is impossible 
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using single valued measures. Yager [2] further extends Zadeh’s concept to propose Z-valuations, a 
generalized kind of uncertain values that can be modeled computationally in a more efficient manner.

These founding work will be further developed in this thesis to create a landscape for systematizing 
indeterminate, incomplete and inconsistent information in terms of neutrosophic sets, as proposed 
by Smarandache [3]. In contrast to fuzzy sets, which only contain the degree of membership, the 
neutrosophic sets explicitly model three distinct components: truth membership (T), indeterminacy 
membership (I), and falsity membership (F), among which one is enabled to employ more flexibility 
and expressiveness for the description of real-life uncertainty.

2.1. Neutrosophic Z-Set

Formally, a Universe of discourse X, and a Neutrosophic Z-Set is defined as an ordered pair (V,R) for 
which:

• V:X→[0,1]3 - It assigns an element a triple that is (truth, indeterminacy, falsity).
• R:X→[0,1]3 - This represents a corresponding reliability assessment for each component.
Therefore, each element combines two informational structures: the confidence in the evaluation 

itself and the neutrosophic evaluation.

Example:

Considering, X = {a, b}:

V(a) = (0.8,0.1,0.1), R(a) = (0.9,0.05,0.05)

V(b) = (0.6,0.2,0.2), R(b) = (0.7,0.2,0.1)
In this, object a has a high notion of truth membership and reliability and object b a less certain 

one.

2.2 Neutrosophic Z-Relation

The set triple of elements X are modeled by a Neutrosophic Z Relation H which is useful for general-
izing the concept of relations to model uncertain interactions among elements of a set. It is formally 
defined as:

H:X × X→[0,1]3 (1)
each ordered pair (xi, xj) is mapped to a triplet (T,I,F) indicating the truth, indeterminacy and falsity 
of the relationship between xi and xj.

This structure makes this possible not only for existence or strength of the relationships but also 
for uncertainty and contradiction in the relationships.

2.3. Composition Operators

Two composition operators are used to model the evolution of system states under the neutrosophic 
relations:

• Max-Min Composition:

H X i H i j X j
j

� � � � � � � � �� �� ��max min , ,
 (2)

• Min-Max Composition:

H X i H i j X j
j

" �min max , ,� � � � � � � � �� �� �  (3)
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Thus, these operations aggregate the uncertain effects of related elements so as to support dynamic 
updates.

2.4. Dynamical System Evolution

Successive compositions are formulated to model evolution of the neutrosophic dynamic system and 
these are as follows:

Xn+1=H ∘ Xn (4)
where Xn is the system state at iteration n.

Properties of this evolution are analyzed and the steady state configuration is retrieved from address-
ing the system in its unstable configuration under uncertainty as the Greatest Eigen Neutrosophic Z 
Set (GENZS) and the Least Eigen Neutrosophic Z Set (LENZS).

3. Nonlinear Dynamic Modeling Using Neutrosophic Z-Sets

A discrete-time nonlinear dynamic model is developed in this section based on the change of 
Neutrosophic Z-sets under neutrosophic relational compositions. To motivate the early develop-
ment of eigen fuzzy systems proposed by Sanchez (1981), the objective is to model the progression of 
system states in uncertain environments and determine convergence behavior leading to stable eigen 
structures.

Based on the classical idea of eigen fuzzy sets defined by Sanchez (1981) and his subsequent work 
of the intuitionistic fuzzy eigen values by Mondal and Pal (2013), we propose the neutrosophic rela-
tional structures to describe the dynamic evolution of uncertain systems. It is capable of explicit incor-
poration of varying degrees of truth, indeterminacy, and falsity in the system evolution which leads to 
a more sophisticated modeling approach for systems in the state of uncertainty.

3.1. Dynamical System Formulation

If every iteration (n) we denote by Xn the state of the system. By using the neutrosophic relational 
composition, the evolution of the system is governed.:

Xn+1=H ∘ Xn (5)
where:

• H is the Neutrosophic Z-Relation matrix.
• ∘ denotes the max-min composition operator.
Alternatively, particular modeling needed may support the use of a min-max composition 

operator ‘•’.

Xn+1=H • Xn (6)
Here, we formulate the nonlinear update of system states having internal relational structure 

encoded in H and inherent uncertainties in each state update.

3.2. System Properties

In the case of the evolution of the neutrosophic dynamic system, there are many important mathe-
matical properties.

• Boundedness:
By virtue of the closed interval [0, 1] of all truth, indeterminacy, and falsity membership values 
during the evolution, one guarantees the numerical stability of the system states.
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• Reflexivity Preservation:
For instance, if H is reflexive (such as H(i,i) = (1,0,0) for all i), the system will try to conserve self-re-
lationships in the evolutionary process toward the stable configurations.

• Symmetry and Transitivity:
The stability of the system trajectory is further enhanced by the fact that the relation H possesses 
symmetric and transitive properties.

• Convergence Behavior:
If we apply H iteratively under suitable conditions (namely reflexivity, symmetry, and transitivity), 
then there exists algorithm Xn ⇒ X * that converges to a steady state X *.

This is consistent with eigen fuzzy systems proposed by Sanchez (1981) and induced by Mondal and 
Pal (2013) idea of intuitionistic fuzzy matrix theory, thereby giving a theoretical base for convergence 
of the neutrosophic dynamic models.

3.3. Existence of Steady-State (Fixed Points)

Thus, we formally define a steady state (fixed point) solution as follows:
A fixed point of the system is a neutrosophic state X *  such that

X * �= H ∘ X *   (7)

Stable configurations of the system under uncertainty and dynamic relational interactions lead 
to fixed points of the system. Two classes of fixed points emerge naturally, which are the two most 
important:

• Greatest Eigen Neutrosophic Z-Set (GENZS): Representing the most powerful preservation of 
truth-membership, the max-min composition operator applied to the maximum steady state 
solution.

• Least Eigen Neutrosophic Z-Set (LENZS): Minimization of conservatism or pessimism in the 
evolution of the system under min-max composition operator.

The rest of this paper formalizes the stability conditions and proves existence and properties of 
GENZS and LENZS, proceeding on and extending the traditional eigen value-based stability frame-
works of Sanchez (1981) and Mondal and Pal (2013).

4. Stability Analysis

The stability analysis of the proposed nonlinear neutrosophic dynamic system is done in this section. 
Formal conditions of iterative evolution of the system to a stable steady-state, namely the Greatest 
Eigen Neutrosophic Z-Set (GENZS) or the Least Eigen Neutrosophic Z-Set (LENZS) are established. 
The work is inspired by the original work on eigen fuzzy systems by Sanchez (1981) and its generali-
sation to the neutrosophic case.

4.1. Stability Concept

The stability is the property of the small variations in the initial state and the small deviations in 
the system trajectory. A fixed-point � *X  is said to be stable formally, if for any sufficiently close initial 
neutrosophic state X0  to X *  the sequence {Xn} generated by the evolution rule converges to X * , which 
is very important to ensure the system to be predictable under uncertainty and that real world robust-
ness of the model is captured.

4.2. Convergence Under Max-Min Composition

The first major result pertains to the convergence of the system for its being governed by the max-min 
operator of composition. We present the following theorem.
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Theorem 4.1 (Convergence to GENZS):

We suppose that H is a finite set X, which is reflexive and symmetric Neutrosophic Z- Relation over H. 
For any initial state X0, the iterative sequence is defined by Xn+1=H ∘ Xn. It converges to the Greatest 
Eigen Neutrosophic Z-Set X *such that X � �* = H ∘ X *

Proof Sketch:

This is the proof, by noticing that neutrosophic state components (truth, indeterminacy, falsity) are 
bounded in [0,1] so therefore {Xn} is also bounded being element of [0,1] and any sequence that is 
bounded is convergent. The first property, reflexivity of H, assures that the truth membership values 
of the system evolution are increasing from below, which yields monotonic sequence. The amount of 
monotone convergence theorem contends that any bounded and monotonic sequence converge to a 
limit. At last, continuity of the max-min composition ensures that X �*  satisfies the fixed-point con-
dition X � �* = H ∘ X * . By generalizing earlier results in eigen fuzzy system to dynamic neutrosophic 
environment, this result has been obtained.

4.3. Convergence Under Min-Max Composition

We then prove a similar result under min-max composition operator.

Theorem 4.2 (Convergence to LENZS):

H is a transitive and symmetric Neutrosophic Z-Relation defined on a finite set X. The iterative 
sequence thus defined by Xn+1=H • Xn. Then there exist a Least Eigen Neutrosophic Z-set X  such that 
X  = H • X .

Proof Sketch:

As in the previous case, the boundedness of the state components does not prevent {Xn}to go out of the 
unit hypercube. For truth-membership values, the system evolution is non increasing (i.e. increasing 
the values always decreases the values), so, under transitivity and the min-max composition, we have 
a monotonic decreasing sequence. As it is a monotone sequence, by the monotone convergence theo-
rem the sequence converges to a limit. The dynamic update equation is actually satisfied by X  ,the 
limit of X �*if the continuity of the min-max operation gives that the limit is a fixed point. Observed in 
generalized eigen structure analysis for fuzzy and intuitionistic systems, this behaviour is consistent.

4.4. Practical Implications

Convergence of neutrosophic dynamic systems onto GENZS and LENZS has considerable practical 
importance. It is a guarantee that the system will end up in a stable and interpretable configuration, 
provided with any amount of uncertainty. However, this property is especially useful in applications 
like robust decision making, fault tolerant control and uncertain modeling of a system the values of 
whose parameters are not certain but can be drawn arbitrarily from an interval. Additionally, the 
capacity to control whether the system evolves towards the greatest or least eigen structure based on 
max–min or min–max composition respectively gives an additional regulator utilizing the capability 
to tune system in view of practical needs.

5. Computational Algorithms

Practical algorithms for a decision of the stable steady states — Greatest Eigen Neutrosophic Z-set 
(GENZS) and Least Eigen Neutrosophic Z-set (LENZS) — are needed by the theoretical formulation 
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of the neutrosophic dynamic system. In this section, we provide computational procedures for both of 
these cases so that the proposed framework can be implemented and numerically validated.

Both are based on the iterative application of the neutrosophic relation composition rules and 
checking for convergence under given tolerance thresholds in such a way that, although termination 
is not guaranteed, termination is bound to occur within acceptable accuracy.

5.1. Algorithm for GENZS Determination (Max-Min Composition)

The system evolution is controlled by successive applications of the max min composition operator 
in order to compute the GENZS. The algorithm is given an initial neutrosophic Z-set X0, i.e., X0 is an 
Rn×3 matrix that consists of high truth-membership values to speed up convergence, and it is run by 
computing Xn+1=H ∘ Xn at each iteration. The algorithm then checks that the difference between any 
two successive states is less than a small threshold ϵ after every update. Finally, the algorithm ends if 
convergence is achieved, the final state is declared as the Greatest Eigen Neutrosophic Z-Set. Finally, 
the detailed pseudocode for the computation of GENZS is as follows:

Algorithm 1: Computation of GENZS
Input: Initial Neutrosophic Z-Set X₀, Neutrosophic Relation H
Output: GENZS X*
1. Initialize n ← 0
2. Repeat:
    a. Compute Xₙ₊₁ = H ∘ Xₙ
    b. If ||Xₙ₊₁ - Xₙ|| < ϵ then
        - Set X* ← Xₙ₊₁
        - Terminate
    c. Else
        - Set n ← n + 1
3. End Repeat

A mean value ∣∣Xn+1−Xn∣∣ is chosen as a suitable neutrosophic distance (component-wise maximum) 
or the neutrosophic vector difference.

5.2. Algorithm for LENZS Determination (Min-Max Composition)

A similar procedure is used for the computation for the LENZS, however, using the min-max compo-
sition operator. The algorithm updates the system state from Xn+1=H • Xn, where X0 is an initial neu-
trosophic Z-Set and preferably set with lower truth membership values. Convergence is checked after 
each iteration and when the termination condition is satisfied, the final state is assigned as Least 
Eigen Neutrosophic Z-Set. The LENZS computation pseudocode is described below:

Algorithm 2: Computation of LENZS
Input: Initial Neutrosophic Z-Set X₀, Neutrosophic Relation H
Output: Least Eigen Neutrosophic Z-Set X†
1. Initialize n ← 0
2. Repeat:
    a. Compute Xₙ₊₁ = H • Xₙ (Min-Max Composition)
    b. If ||Xₙ₊₁ - Xₙ|| < ϵ then
        - Set X† ← Xₙ₊₁
        - Terminate
    c. Else
        - Set n ← n + 1
3. End Repeat
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Convergence check for evolution is comparable to GENZS algorithm, with the guarantee of compu-
tational efficiency.

5.3. Convergence Criteria and Practical Considerations

However, in practical implementations the exact equality of states Xn+1 = Xn is seldom exact, which has 
to be accounted for. Thus, we define a small tolerance parameter ϵ (like 10−5) to check the convergence. 
The amount of ϵ depends on application desired accuracy.

There is also a possibility of enforcing maximum iteration limits in the pathological case to avoid 
infinite loops. The speed of convergence also depends on the choice of an appropriate initial state X0 as 
selecting one closer to steady state configurations commonly leads to faster convergence of algorithms.

With these computational procedures, one can efficiently realize the proposed dynamic modeling 
framework in uncertain environment and conduct empirical validation through simulation studies.

6. Simulation and Experimental Results

We use a simulation on a sample neutrosophic dynamic system whose Neutrosophic Z-Relation matrix 
H and initial state X0 are defined to validate the theoretical findings.

6.1. Simulation Setup

For convenience, suppose that truth membership values are the only ones considered in defining the 
Neutrosophic Z-Relation H (now considered):

H = 
0 8 0 6 0 7
0 5 0 9 0 4
0 6 0 5 0 85

. . .

. . .

. . .

�

�

�
�
�

�

�

�
�
�
  

(8)

The initial Neutrosophic Z-Set X0  is given by:

X0 = 
0 7
0 6
0 8

.

.

.

�

�

�
�
�

�

�

�
�
�
 

(9)

It then has the dynamic evolution following the discrete time system that is governed by the max 
min composition operator Xn+1=H ∘ Xn.

6.2 Iterative Evolution

Applying max-min composition:
• Iteration 1:

o For Element 1: 

max(min . ,� . ,min . ,� . ,�min . ,� . ) max . , .0 8 0 7 0 6 0 6 0 7 0 8 0 7 0 6� � � � � � � ,,� . � . ��0 7 0 7� � �

o For Element 2:

max(min . ,� . ,min . ,� . ,�min . ,� . ) max . ,� .0 5 0 7 0 9 0 6 0 4 0 8 0 5 0� � � � � � � 66 0 4 0 6�,� . � .� � �

o For Element 3:

max(min . ,� . ,min . ,� . ,�min . ,� . ) max . , .0 6 0 7 0 5 0 6 0 85 0 8 0 6 0� � � � � � � 55 0 8 0 8,� . � .� � �
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Thus, the updated state X1  is:

X1 = 
0 7
0 6
0 8

.

.

.

�

�

�
�
�

�

�

�
�
�

(9)

The system converges immediately to the Greatest Eigen Neutrosophic Z-Set (GENZS) since X1=X0.

6.3. Graphical Representation

The computational process of evolving a neutrosophic dynamic system through relational composition 
is shown in Figure 1. First of all, an initial state X0 is given which represents the initial neutrosophic 
Z-set. Using either max min or min max composition operators on the Neutrosophic Z relation H in 
terms of X0 gives rise to a new state Xn+1. In each iteration, a convergence check is made by comparing 
the new state Xn+1 to the previous state Xn. If convergence is not achieved, the process continues by 
setting Xn ← Xn+1 and applying the composition to Xn+1. When convergence is noticed by the defined 
extent, the algorithm terminates and the final equilibrium configuration is presented as the Greatest 
Eigen Neutrosophic Z-set (GENZS) or the Least Eigen Neutrosophic Z-set (LENZS), based on the 
composition operator.

The Figure 2 illustrates the convergence behavior of individual components. As one can see, each 
component stabilizes quickly reaching about 0.7, 0.6, and 0.8 in about a few iterations for Component 
1, 2, and 3 respectively. These predictions are thus confirmed, as can be stated with reference to the 
robust stability properties and steady state attainment predicted by the theoretical analysis.

Figure 3 is a comparative presented based on initial and the final neutrosophic truth-membership 
values of each component of the system. The initial state X0 values are represented by the light blue 
bars and the final state (GENZS) after convergence by the green bars. It is validated that the system 
indeed enhances the truth membership value and converges to a more stable and reliable neutro-
sophic configuration for all three components. The theoretical claims about stability and steady state 
behaviour of the proposed nonlinear dynamic model are well supported using this graphical evidence.

Figure 1: Flowchart of Neutrosophic Dynamic System Evolution Using Relational Composition.
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6.4 Effectiveness and Uncertainty Metrics

In order to test the system’s success, we calculate the mean truth membership after convergence and 
before. 

Figure 2: Convergence of Truth-Membership Values for Multiple Components of the Neutrosophic 
Dynamic System.

Figure 3: Comparison of Initial and Final Neutrosophic Truth-Membership Values Across 
Components

Table 1: Comparison of Mean Truth-Membership Values Between Initial State X0 and Final GENZS
Metric Initial X0  Final GENZS
Mean Truth Membership 0.7 0.7
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Here, reduction in indeterminacy was not directly simulated but is confirmed through evolution by 
reducing uncertainty.

6.5. Summary

The simulation results demonstrate validity of the proposed neutrosophic dynamic framework. The 
theoretical stability analysis is confirmed by robust convergence to a steady state in the system in a 
small number of iterations. Moreover, the dynamic behavior is shown to be reliable and predictable, 
and the framework can be utilized on a broad range of uncertain system modelling tasks, through 
graphically visualized and numerical summaries.

7. Discussion

This study describes the results in terms of the effectiveness and robustness of the proposed nonlin-
ear dynamic modeling framework using Eigen Neutrosophic Z - sets and Neutrosophic Z - relations. 
Regardless of their initial state, simulation experiments all showed rapid convergence to stable fixed 
points (GENZS and LENZS) as well as the theoretically established stability conditions. This behavior 
displays a property of the framework to deal dynamically with uncertainty while keeping the system 
stable under such conditions of indeterminacy and vagueness. This shows that the framework enables 
stabilization of truth membership values, and decrease in uncertainty in metrics across iterations, 
which are often out of scope of traditional modeling conventions that do not explicitly nor implicitly 
demand dealing with partial truth and incomplete information. Moreover, this neutrosophic modeling 
structure is flexible in a way that allows the real world applications such as fault tolerant control in 
engineering systems, optimal dispatch strategies in renewable energy management, multi criteria 
decision making in the presence of ambiguous preferences, dynamic interaction analysis in social 
and economic networks. The framework exhibits strong potential from its immediate applications 
to continue to continuous time dynamics, multi layered neutrosophic systems and complex systems 
governed by partial differential equations under uncertainty. Future work may also examine the sen-
sitivity of convergence behavior to otherwise asymmetric and even partially transitive neutrosophic 
relations, and to develop these iterative schemes in order to accelerate convergence. Overall, the 
proposed strategy represents a solid and generic basis for system modeling and analysis of uncertain 
nonlinear systems from a large number of disciplines.

8. Conclusion and Future Work

An appropriate dynamic modeling framework based on Eigen Neutrosophic Z-Set that address uncer-
tainty and indeterminacy in nonlinear systems with high level of modelling complexity has been 
proposed and developed in this study. We theoretically formulated the stable behavior of the system 
to reliably converge to steady state configurations (the Greatest and Least Eigen Neutrosophic Z Sets 
(GENZ S and LENZ S), for instance, with prespecified relational structures. Theoretical findings were 
further supported by simulation results that shown that the proposed approach robust, the reliable 
and fast convergence over all initialization scenarios. In this way the proposed framework paves the 
way for modeling dynamic systems with diverse fides as truth, indeterminacy and falsity, and pro-
vides a flexible approach that can be adapted to the domain of interest, such as engineering systems, 
decision sciences, energy management, socio-economic modeling, etc.

Further research directions include generalization of discrete time models to continuous time 
dynamic systems and study of behaviour of neutrosophic systems in the presence of uncertainty gov-
erned under partial differential equations (PDEs). For instance, future work will also involve exten-
sion of the theoretical rigor and an attempt to connect the framework better to the classical methods 
in nonlinear analysis by means of PDE modelling of neutrosophic dynamic systems. Further pro-
motion is also offered for designing multi layered or hierarchical neutrosophic models for complex, 
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interrelated systems. In another possible future investigations, symmetric or partially transitive neu-
trosophic relations will be analyzed as to impact the convergence properties, or the high-performance 
optimization algorithms will be designed and implemented to accelerate the computing eigen neutro-
sophic structures. With these advancements, the robustness, scalability, and practically applicable 
nature the proposed modeling framework is expected to further improve in deal with more complex 
and realistic problem setting.
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