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Abstract

This paper introduces a new class of fractional chaotic systems with no fixed points, corresponding to
standard chaotic maps, which exhibit chaotic behavior. We show the relationships between entropy
in information theory and intrinsic properties in chaos theory of the proposed system. The chaotic
behavior of this class is analyzed by exploring numerically using phase plots, bifurcation diagrams,
Lyapunov exponents, and approximate entropy to examine the dynamics of the designed system and
assess the effectiveness of varying the fractional order. An exact expression for solutions of the system
is determined. Additionally, a new chaotic attractor is presented. In the practical aspect of this work,
we present an image encryption algorithm based on the proposed system. Based on the experimen-
tal results obtained, we can conclude that the proposed algorithm achieves effective encryption with
enhanced security, making it resistant to common attacks.
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Key words and phrases: Approximate entropy Chaotic behaviour Lyapunov exponents Image encryp-
tion.

1. Introduction

Both types, discrete and continuous fractional dynamical systems, have recently proved to be exciting,
fruitful, and valuable tools in the modeling of many applications in different fields, such as Electrical,
speech processing, Electronics, biological signal, Computer Engineering, and communication
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systems, etc. [1-4, 26]. Over the years, many studies of different chaotic systems have been introduced
in various fields [5—11]. In a notable study [12], the authors explored the dynamic characteristics of
a fractional-order chaotic system, corresponding to a classical system known for its chaotic behavior.
The investigation delves into the intricate differences and properties that emerge when transitioning
from standard to fractional-order systems, providing valuable insights into the nature of chaos in
fractional dynamics [13] proposed a fractional chaotic system based on the integer order standard
system. They analyzed the chaotic behavior of their proposed system by using bifurcation diagrams
and experimental bounds on the placement of fractional order. [14] designed a continuous fractional
chaotic system from the discrete logistic map by using a new technique based on delay time. The anal-
ysis and control of dynamical systems have been extensively studied in the literature, investigated [4,
15, 16]. It has been frequently asserted that chaotic trajectories exhibit aperiodic behavior, closely
resembling random processes [17]. The loss of information is characterized by the flow of information
about the initial state by the evolution of a conditional Shannon entropy, which generalizes the KS
entropy for the case of observing the uncertainty more than one step ahead into the future [18]. Our
work is interested in examining the dynamics of proposed fractional chaotic systems from the per-
spective of information theory. It is well known that dynamical systems without fixed points do not
possess equilibrium states that can be analyzed for stability. Instead, chaos emerges directly from
the system’s intrinsic dynamics. This distinctive feature enhances their cryptographic performance,
as they are associated with higher degrees of chaotic behavior compared to conventional systems.
Consequently, these systems are considered more suitable for applications in secure communication
and encryption.

The approximate entropy can be considered as a measure to determine the chaotic range of dynam-
ical systems. Consequently, we use this measure to discuss the chaotic behavior of fraction dynam-
ical systems in discrete time. We show that fractal orders have a significant and noticeable effect
on the chaotic behavior of study systems; therefore, they can be considered as a key player in that.
Furthermore, a novel image encryption algorithm based on the proposed chaotic system has been
introduced. Experimental analyses conducted on a diverse set of images demonstrate that the pro-
posed algorithm not only achieves a high level of encryption effectiveness but also exhibits exceptional
robustness, making it highly resistant to cryptographic attacks. As a result, it significantly enhances
overall security. The obtained results are favorable when compared to previous studies, showcasing
clear improvements in both security and performance.

2. Preliminaries

N. denotes the isolated time scale, N, = {T,T +1,7+2, }, (T eR fixed).

Definition 2.1 [19] If g:N, — R and § >0 (8 dosent belong to nutural numbers ), then & — frac-
tional difference operator is

APg(t)=AP"g(t+1)-AP"D(¢) (1)

And A°g(t)=g(t). This gives,

2(t)=3 (1) Czar g e+ p-k) @)

k=

O

Definition 2.2 /20] If g:N, — R and 5 >0 (8 dosent belong to nutural numbers ), then 5 — frac-
tional difference operator is

s 13 1)
Ag -r(5 (- ) g(s), teN.; (3)

S=T
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Here, 7 represents the initial point, while CD(s) is defined as d)(s) =s+1. The term t° refers to the
L(t+1)
r(t+1-5)
Definition 2.3 [20] For any 6 >0 and for a function g(t) defined on N_, the Caputo like delta differ-

ence of order & is defined as follows

falling function, mathematically expressed as 1) = where I'" denotes the Gamma function.

i~(p-5)

W)=y 2 (06 ), teN,, @

where p=[6] + 1, the [ ] is number ceiling.
If we take p=1, then the & -fractional difference is

( -5
z ( ) ) Ag (S), te Nr+1+6 (5)

Theorem 2.4 [13] The following equations are equivalent

CA (gt =Dt +5-1,8(t+5 1) ¢
APg(ty=gr,k=0,1,2,.., p-1 ©
And
1 =5 .
g(t)=g,(t)+ S (t—(n(s)) Jo(s+5-Lg(s+5-1)), teN,, ™
F(6)321+m—5

Where, p=[6] + 1, and

kS

(B
uy (t) = (Caid MOC 2(r) ®)

T (k+1)

B
Il

Remark 2.5 [12] If we take t =0 (initial point) , and 0< 6 <1, equation (8) becomes

g(t)=g (1) + Flg) S (—v(s)) (s v o Lg(s+5-1)) ©
s=1-6 r(t_s)
TT(t-s+1-3)

g(t)=go(t>+r(15)]jr((t—f+5>

If we use the expansion (t -7 (s ) and j=s+0, we have

T(t-j+1) (-18(i-1) (10)

3. System Description

Our work is interested to investigate the dynamics and chaos of fractional order system based on the
standard form:
4 4
Xjy =X, +a(xj +y; —1)
. . (11)
Yin =Y, _ﬁyj (xj +Y; _1)
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where o and B are real-value parameters. Based on equation (11), we construct a new system has
chaotic behavior by using (}/1,7/2 ) — Caputo fractional as

CAle(t) =a}((x(t -1+ 71))4 +(y(t -1+ 7/1))4 —1)
CAPy(t)=-P yt-1+y2)(x(t-1+72)* +(yt-1+y2)" -1

Where 0<y,,7, <1 are fractional orders. Now, we use theorem 1. to get on the following equivalent
integral equations of system(12) ,

(12)

(=) " (= (G-1) + (6(G-1))" -1

") i=n
t (13)
y(t)=y(f)—r&) > (-2 (-n)" "y (-D)(((-1) +(r(-1) 1)
For each, i=1,2 and 7t =0 by replacing the form (t—r(j—yi))(y"fl)by l;((t[—i};)), we obtain
—J
LT(t—j+7, ) 4 . 4
R A ) CURURCI R
t (14)

y(t)=y0 _ B z l;((t_ j_+y2))y(j—1)((x(j—1))4 +(y(j—1))4 _1)

r (72 ) j=b+1

Where (x, , y,) is an initial vector.

4. Visualization and Analysis

Chaotic Dynamics: In this section, we have the formula (14) to calculate the solutions of fractional
chaotic system (12). We investigate the sensitivity of the fractional-order system (12) with respect
to the bifurcation parameters o« and § and largest Lyapunov exponents. As seen in Figure 1., the
graphs of phase portrait of the fractional dynamical system (12) with o = 0.8, B = 0.8 and initial
conditions x, =0.81, y,= —0.14 for different values of the fractional orders y, and y, show that the
trajectories x (t), y(t) are bounded when the fractional orders y, and y, are decreasing. We notice the
clarity of the effect of the values of fractional orders y, and y, on the chaotic behaviour of system (12).

oLy

(7,098 . 1,~1) (1,096, 7,-1)
- - = . 15 = : = =

Figure 1: The chaotic attractor of proposed system in (12) with o = 0.8, f = 0.8
, X, =0.81, y,=-0.14 and y, =1 for various fractional orders y,.
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whereas when y;, =0.96 and y, =1, the chaotic behavioris delayed. Now, if we take the parameters
a=0.78, B =0.78, x,=0.81, y,=-0.14 and y, =1 of system (12), then in Figure 2. we carefully
note that the effect of y, on the chaotic behavior of system (12). whereas wheny, =0.96 and y, =1,
the chaotic behaviour delayed and the states of proposed system diverge to infinity. Also, we observe
that when 1<y, <0.96 the fractional dynamical system (12) exhibits a chaotic behaviour, and when
7, =0.95 ,we fall in to an unbounded attractor.

Bifurcation diagrams are analyzed by varying one parameter at a time and keeping others fixed.
As a first step,the parameter f = 0.8 is fixed in Figure 3 to vary a along interval [0.1,0.9] with
initial condition x, =0.81, y,=-0.14 . The bifurcation diagrams obtained with the parameter
B =0.78 and vary o along interval [0.1,0.9] with initial condition x, =0.81, y,= —-0.14. Finally,
in Figure 4 the bifurcation diagrams obtained with the parameter a = 0.8 and vary 8 along interval
[0.1,0.9] with initial condition x, =0.81,y, =—-0.14 . By comparing Figure 3 and Figure 4 , we deter-
mine that the range where chaos exists shrinks as y, and  decreases. From this we conclude that a
slight change of fractional order y, has a significant impact on the chaotic behavior

In figure 5, we display the time evolution of the system states corresponding to equation (12) under
varying parameters and fractional orders. The largest Lyapunov exponent is one of important tools to
describe the chaotic motion of a linear oand nonlinear dynamical systems. Figure 6a shows that the

(,=1.7,=1) (7,=0.99,7,=1) (y,=0.92,y,=1)

F 4
r

Figure 2: The chaotic attractor of proposed system in (12) with
a=078 ,8=0.78 x,=0.81, y,=-0.14 and y, =1 for various fractional orders ;.

(7, =0.98,7,=1) (1,~0.96,7,=1)

15

x(t)
x(t)

Figure 3: The bifurcation diagram of fractional chaotic system (12) on varying a from 0.1 to 0.9. The
other parameter is fixed = 0.8. For every value of a € 0.1,0.9] , we start at an arbitrary initial
condition x, =0.81, y,=-0.14 and calculate x(t), t=1,2,...,N for N arbitrarily large.
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Figure 4: The bifurcation diagram of fractional chaotic system (12) on varying S from 0.1 to 0.9. The
other parameter is fixed o = 0.8. For every value of 8 [0.1,0.9] , we start at an arbitrary initial
condition x, =0.81, y,= —-0.14 and calculate x(t), t=1,2,...,N for N arbitrarily large.
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Figure 5: Time evolution of states for fractional orders y, =0.98, y, =1 and initial state
x, =0.81, y,=-0.14 with the following parameters: (a) @ = 0.8, § = 0.8 (b) « = 0.78, = 0.78 ).

largest Lyapunov exponent of proposed system (12) with # = 0.8 | fractional orders y, =0.98, y, =1
and initial state x,=0.81, y,=-0.14 along to o< [0.1,0.9] is negative only if 0.44 <« <0.61,
0.7884 < <0.7912, and 0.63 <a <0.66. Therefore, the system does not show chaotic behavior but
the another intervals of « the largest Lyapunov exponent is positive. In Figure 6. (b) we note that the
largest Lyapunov exponent of system (12) with fix o = 0.8, fractional orders y, =0.98, y, =1 and ini-
tial state x, =0.81, y,=—-0.14 alongto f e [O 1,0. 9] is always positive this means that the system
is chaotic for each values of 8 € [0 1,0. 9]
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kma

Figure 6: Evolutions of largest Lyapunov exponent (4, ) for fractional orders y; =0.98, y, =1 and
initial state x, =0.81, y,= -0.14 with the following parameters:(a) B = 0.8 (b) a = 0.8

Information Analysis:

Entropy is one of helpful and applied measurement to discover various chaotic systems. Shannon C. E.
(1948) [21] presented measure to quantify the uncertainty of a discrete random variable X and prob-
ability function f (x;@) by [22]

H(X;0)=-E(In(f(x:0))) (15)

On the other hand, The Kolmogorov Sinai entropy (KS entropy), is one of the most important
measures of chaotic motion of an arbitrary dimensional phase space. The KS entropy can be seen as
a value measuring the creation of information at each iteration under the action of a chaotic system.
In general, as the chaotic orbit evolves, the entropy provides a measure of the information gained
or lost within the system. Another interpretation is that a positive value of Kolmogorov-Sinai (KS)
entropy indicates the presence of chaos or disorder within the system, whereas a value of zero signi-
fies a non-chaotic or orderly system. KS entropy is the supremum of Shannon’s entropy. Calculating
exact entropy of nonlinear dynamical systems is almost impossible, so we resort to approximation.
The approximate entropy was proposed by Pincus [19] to present the complexity of time series. Let
m be a fixed positive integer number. N data points {un} given by the vector sequences U, through
Uy_,..; which defined by U, = (ui Ui qseeos Uy 1 ) The distance between the vectors U; and U is defined
as d(Ui ’Uj) = MaXgepgn [un+i - u’n+j‘

Define
number of j <N-m+1,d\U;, ,U.|<r
c.m(r)z{ / (v, 0)sr | (16)
' N-m+1
Where, r is effectively a filter, also, define
N-m+1

" (7")=(N—m+1)_1 z [lh(Clm (r)) (17)
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The approximate entropy is given [20]
AE(r)=y" (r)=y"" (r) (18)

[23] showed the formula that explains the relationship between KS entropy (KSE) and Lyapunov
exponents as follows,

KSE = ;‘) A, 19)

Where, 1. represent Lyapunov exponents. As entropy evolves over time, it plays a crucial role in
dynamical systems by determining whether a trajectory follows a regular or irregular pattern. [24].

Figure 7 shows that in the periods, 0.45<a <0.6 , 0.62<a <0.66 and o =0.5, the approximate
entropy converges to zero this means that the system non-chaotic or the chaotic behavioris of system
almost disappeard. By comparing Figure 7. and Figure 8. we conclude that the sensitivity of the
system (12) to parameter o is more than to 8. In addition, As illustrated in Figure 7 and Figure 8,
when closely spaced fractional orders are considered, the entropy measures change noticeably, indi-
cating the system’s high sensitivity to fractional orders. This sensitivity is reflected in the Lyapunov
exponents, which vary with the order and reveal transitions between periodic and chaotic regimes, as
well as in the bifurcation diagrams that show clear qualitative shifts. Certain fractional orders make
chaos more pronounced, yielding higher entropy values and larger positive Lyapunov exponents. This
property highlights the richer dynamics of fractional-order systems and provides a powerful cryptog-
raphy key space. content...

By Figure 9. and Table 1. can be clearly seen, that there is a loss of information in the same period
in which chaos appears according to Lyapunov measure, therefore we see the boundedness rela-
tion clearly in this Figure. We observe that in the interval, 0.5 <« <0.62 , the approximate entropy
converges to zero and the values of largest Lyapunov exponent are negative this means that the
system non-chaotic or the chaotic behaviour of system almost disappeared. But if the values of larg-
est Lyapunov exponent are positive, there is an increase in approximate entropy. Consequently, the
entropy can be used as effective tool to explain the chaotic range of proposed system.
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Figure 7: Evolutions of approximate entropy (AE) varying as o e [0.1,0.9] when B = 0.8 and the
initial state x, =0.81, y, = -0.14 with various fractional orders.
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Figure 8: Evolution of approximate entropy (AE) varying as 8 € [0.1,0.9] when o = 0.8 and the ini-
tial state x, =0.81, y, = —0.14 with various fractional orders.

[

Figure 9: shows the relationship between approximate entropy (AE) and largest Lyapunov exponent
(A,.x) Varying as a € [0.5,0.9] when f=0.8 and the initial state x, =0.81, y,=-0.14 with frac-
tional orders y, =1 and y; =0.98.

Table 1: Calculation x” of original and cipher images at @ = 0.78, B = 0.8 and initial states
x, =0.81, y,=-0.14 with Fractional orders: y, =1, y, =0.911

2

x
Image Original Image Cipher Image
Lena 42887 212.15
Barbara 43001.63 241.97

Baboon 57895.38 214.31
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5. Image Encryption Application

Design and Development of the Proposed Algorithm: Chaotic dynamical systems are charac-
terized by their distinctive and unique properties, such as extreme sensitivity to initial conditions
and the non-repetitive nature of their states. This results in an inherent unpredictability, structural
complexity, and a homogeneous distribution of states, making it exceedingly difficult to forecast their
outcomes. Consequently, employing such systems in image encryption ensures exceptionally high
levels of security. It is well understood that the connection between pixels and the elements of the
image matrix is both strong and crucial. Therefore, disrupting this connection can lead to the loss
of vital information contained within the image. Firstly, we produce the shuffling array SFy° as fol-
lows 1) (Rows shuffling) we utilize the logistic map a,,, =ra,(1—a,) to generate a sequence of values
i;,1y,...,, ensuring that i, #i for all k#s. The rows of the position array R are then rearranged
according to these values. As a result, we obtain a newly shuffled array SFj [ creating a distinct pat-
tern akin to fogbows

Ril,l Ril,2 Ril,n
O
Ry Ry oo R

2) (columns shuffling) we apply a similar approach to generate the sequence of values j, jy,...,J,
ensuring that j, # j, for all k#s. The columns of the position array R are then are then rearranged
according to these values. The matrix form in step 1 is updated accordingly

R R - R

S re _ iy, J1 Riz,jz e Riz 2
R —|. . . .

im ’jl lm 7j2 o im 7jn

The steps of proposed image encryption algorithm are outlined as follows:

Step 1: The original image is converted into an m x n grayscale image denoted as R .
Step 2: The shuffling arraySFy’ is generated.
Step 3: The values of a matrix SF; are then transformed from decimal to binary, resulting in a set
M={M, M. M,,, }.
Step 4: Use the formula (14) to generate the sequences x = {xl,x2,..., xmn} and y= {yl,yz,..., Youm } as
follows
1. Determine the initial vector (x (1) , y(l)).
2. For t =2:mn ; S1=0; S2=0;

For j =1:t, compute

S1=S1+ M((x(j -1)) +(y(j-1)) —1),

I(t-j+1)
82=82+%y(j—1)((x(j_1))4 +(y(j—1))4 _1)

End

End
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Step 5: Rewrite the sequences x = {xl,xZ,..., xmn} and y :{yl,yz,..., ymn} and obtained in step 4 as
follows

X = ﬂoor(mod (x x10™ ) ,256)

y= ﬂoor(mod(y x10" ) ,256)

Step 6: Transform the values obtained in step 5 from decimal to binary, resulting in binary sequences
B* = {le,le,..., B,’fm} and B’ = {Bly,Bly,..., B,fm} for x and y, respectively.

Step 7: Apply a bitwise XOR operation between B* and B”,yielding B = bitxor(B”,By).

Step 8: Perform a bitwise XOR operation between the original grayscale image M and B, resulting
in E =bitxor (M,B).

Step 9: Transform the values of a matrix E from binary to decimal, producing the set
D= {Dl,D2,..., D, }

Step 10: Reshape the vector D to be a matrix C with dimension m x n, representing the cipher image.

Experimental Analysis: In this subsection, we analyse the performance of the proposed algorithm
through a series of experiments conducted on a variety of images. To evaluate its efficiency, the algo-
rithm was tested on three standard benchmark images: Lena (256x256 pixels), Barbara (256x256
pixels), and Baboon (256x256 pixels). These images were selected due to their common use and sig-
nificance in image processing research. The purpose of this analysis is to highlight the algorithm’s
effectiveness and robustness in practical applications. The experimental results presented in Figure
10 demonstrate that the image encryption process under investigation is both effective and reliable
when compared to previous studies. The proposed fractional-order chaotic system generates a highly
sensitive chaotic random sequence, particularly in relation to initial conditions and the encryption
key. Any modification of these parameters leads to a significantly altered encrypted image, which
enhances security and ensures robust resistance to brute-force attacks. This confirms the system’s
suitability for secure encryption applications. The image histogram is utilized to represent the dis-
tribution of pixels across different gray levels, illustrating the number of pixels at each intensity
value. Significant statistical insights regarding the image can be extracted from its histogram. For
an encrypted image, the histogram should display a uniform distribution, distinctly differing from
that of the original image, indicating successful encryption. In Figure 10, the histograms correspond-
ing to the encrypted images, displayed on the right side, reveal an almost uniform distribution of
pixel intensities across all levels. This uniformity is a hallmark of encryption techniques aimed at
concealing the original visual content. By distributing pixel intensities evenly, the encryption effec-
tively eliminates the recognizable patterns found in the original images, thereby enhancing security
by rendering the encrypted image visually incoherent. The comparison between the histograms of
the original and encrypted images highlights the encryption process’s success. The shift from a
structured, recognizable pattern in the original histograms to a flat, uniform distribution in the
encrypted histograms demonstrates that the encryption method has effectively disrupted the origi-
nal pixel intensity distributions, ensuring that the encrypted images retain no discernible traces of
the original content.

Statistical and Entropy Analysis: It is well-established that encrypted images demonstrate a uni-
form distribution when statistical tests, such as the Chi-square test, show that their distribution
does not significantly deviate from uniformity. This is confirmed when the Chi-square test value falls
below the critical value from the table, supporting the null hypothesis, which implies that the distri-
bution closely resembles a uniform distribution.

The chi-square test [25] can be utilized to evaluate the uniformity and consistency of data distribu-
tion using the following formula
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Figure 10: (Left) (A), (B) and (C) correspond to the original images Lena, Barbara and baboon and
respectively along with their associated encrypted (cipher) versions. These figures illustrate the
transformation of the original images into their ciphered counterparts, highlighting the effective-
ness of the encryption process. (Right) (A), (B) and (C) refer to Original image and Cipher image

histograms of Lena, Barbara and baboon respectively..

Table 2. Calculation Entropy of original and cipher images at = 0.78, B = 0.8 and initial states
x,=0.81, y,=-0.14 with Fractional orders: y, =1, y,=0.911

Entropy

Image Original Image Cipher Image
Lena 7.7441

Barbara 7.6387

Baboon 7.7680

(Ms -m )2

n
R

s=1 ms

(20)

where, n = 256 and M, and m, represent the observed and the expected occurrence frequencies
of each gray level (0-255). A significance level of 0.05 is used in this test. The purpose of this test is
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to measure the discrepancies between the observed and expected distributions, helping to determine
whether the data conforms to an expected pattern or deviates significantly. The chi-square values
for the encrypted images are provided in Table 1. It is clear that x* (17 —1,0.05) = x? (255,0.05) =293.
Therefore, the null hypothesis is accepted at this level of significance, indicating that the histograms
of the encrypted images exhibit a uniform distribution. As presented in Table 1, the computed x*
values are less than the critical value of x> (255,0.05)

6. Conclusion

In this study, we examined a class of discrete fractional chaotic systems. While various tools, such
as Lyapunov exponents, bifurcation diagrams, and chaotic attractors, are commonly used to demon-
strate chaotic behavior, we also incorporated entropy as a straightforward method to confirm chaos.
Additionally, we clarified several fundamental aspects of chaos theory and entropy within the con-
text of fractional dynamical systems. The tools of chaos theory—namely, the bifurcation diagram,
Lyapunov exponents, chaotic attractors, and entropy—were shown to be effective in validating cha-
otic behavior in these systems. Furthermore, we highlighted the relationship between Lyapunov
exponents and entropy, demonstrating their role in explaining the chaotic range of the proposed
system. At first glance, the chaotic behavior of the standard form (11) may appear similar to that of
classical first-order dynamical systems. However, the dynamics of the fractional-order system (12)
are notably more complex due to their heightened sensitivity to fractional orders. From an applied
perspective, such as in cryptography or communication systems, the fractional orders can be regarded
as an important parameter, acting as a key component in the process. Our findings indicate that
entropy is an effective and easily applicable measure of chaos. Additionally, the results confirm that
the designed system exhibits the property of coexisting attractors. Moreover, this paper introduces a
carefully developed algorithm designed for image encryption. The algorithm utilizes the logistic map
to systematically shuffle the matrix elements that represent the pixels of the image being encrypted.
The encryption process is then carried out using chaotic systems with fractional orders, as outlined
in this study. Experimental results conducted on various images demonstrate that the proposed algo-
rithm not only achieves high levels of efficiency but also exhibits remarkable robustness. This makes
it highly resistant to cryptanalytic attacks, thus significantly enhancing the overall security of the
encryption process.

Finally, we would refer to this study opens several promising directions for future work. One poten-
tial extension is to investigate fractional orders beyond the interval 0 <y < 1, which may uncover
richer dynamical behaviors and provide additional flexibility for encryption design. Another avenue
1s the generalization of the proposed system to higher dimensions, thereby increasing the complexity
and security level of the encryption process. Moreover, practical aspects such as hardware implemen-
tation and real-time optimization should be explored to reduce computational cost and enhance the
applicability of the proposed scheme in real-world encryption scenarios.
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