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Abstract
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1. Introduction

Let � � 2 (τ = n  or m), τ  be the Euclidean τ -space and � �1 be the unit sphere in τ  equipped with 
the induced Lebesgue surface measure d�� ( )� .

For � �1 1 1 2 2 2 1 2 1 2 1 2= , = ( , , , , > 0)c id c id c c d d withc c� � � , let 
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where g  is a measurable function on  � ��  and Θ  is a function on  n m× , which is measurable, 
integrable over  n m� ��1 1 , homogeneous of degree zero, and satysfying 

 n n m m
d d� �� �1 1( , ) ( ) = ( , ) ( ) = 0.� �� � � � � � � � (1)

For an appropriate function � :   � �� � , we let � �, ,g  be the Marcinkiewicz operator along the 
surface of revolution � �

�
( , ) = , , ( , )� � � � � �� � given by 

M U U� �, , ,
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where  � � ��C n m
0 ( )    and 

A w v s
l t

w v s Kl t t l g, 1 2 ,( )( , , ) = 1 ( , , ( , )) ( , ) � � � �
� � � � � �

� �� � � � � � � dd d� � .

We point out that the operator � �, ,g  is a natural generalization of the operator �,g
�  related to the 

surface � �
�
( ) = , ( )� � �� �  in the one parameter setting, which is defined by 

M U U�

�
, 1 1 1 1
( )( , ) = 1 ( , ( ))

( ) ( )
g n l n nw w

l
w w

g
d�

� � �� � �
� �

�
�

� � � �� � � �


��

2 1/2

.dl
l

�

�

�
�
�

�

�

�
�
�

(3)

The operator �,g
�  was initiated in [1] whenever ψ ( ) =l l and g ≡1. Precisely, the author of [1] 

established the boundedness of �,1
�  on Lp n( )1 +  for p∈ (1,2] under the condition �� �Lip n

� ( )1  for 
some � � (0,1]. Thereafter, the operator �,g

�  has been considered by many mathematicians, see for 
example [2-10].

In this work, we are interested in studying the operator � �, ,g . When � � 0 and ρ ρ1 2=1 = , we 
denote the operator � �, ,g  by Θ,g . In addition, when g ≡1, then Θ,g  reduces to the classical 
Marcinkiewicz integral on product domains, which is denoted by Θ . The discussion of the operator 
Θ  has attracted the attentions of many researchers for along time. Historically, the Lp  boundedness 
of Θ  was begun in [11] in which the author established only the L2 boundedness of Θ  whenever Θ  
belongs to the space L L n m( ) ( )2 1 1log  � �� . Thereafter, the authors of [12] proved the Lp  boundedness 
of Θ  for all p� �(1, ) under the assumption �� �� �L L n m( )( )1 1log   , and also they mentioned that 
similar argument as that in [13] gives the optimality to the condition �� �� �L L n m( )( )1 1log   . On 
the other side, the author of [14] found that the operator Θ  is of type ( , )p p  for p� �(1, ) provided 
that �� �� �Bq

n m(0,0) 1 1( )   with q >1, and that the condition �� �� �Bq
n m(0,0) 1 1( )   is optimal. Here, 

Bq
n m(0, ) 1 1( )�  � ��  refers to the block space introduced in [15].

Later on, Yano’s extrapolation argument [16] was employed by the authors of [17] to find the Lp  
boundedness of Θ,g  for 1 / 1 / 2 < {1 / ',1 / 2}p � min �  whenever the kernel function Θ  lies either in 
the space L L n m( )( )1 1log  � ��  or in the space Bq

n m(0,0) 1 1( ) � ��  and the mapping function g  belongs 
to � �� �� ( )   for some κ >1, where � �� �� ( )   (for κ >1) is the class of all measurable functions g  
satisfying 

g g l t dldt
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The above results have motivated many mathematicians to study the Marcinkiewicz integral on 
product spaces along surfaces of revolution of the form 

M U U�,
,

1 1 ,
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( )( , , , ) = ( )g n m l tw w v v A dldt
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22

, (4)

where 

A
t l

w w v v Kl t t l n m,
,

1 2 1 1( ) = 1 ( , ( ), , ( ))� �
� � � �

� � � � � � 
� � � �� � � � � � �,, ( , ) .g d d� � � �

Under various assumptions on the mappings ψ , φ , Θ , and g , the operator �,
,
g

� �  was studied by 
many authors (see [18-24]).

Very recently, the authors of [25] discussed the operator � �, ,g  for several classes of Λ . In fact, 
they proved its boundedness on Lp n m( )  × ×  for all 1 / 2 1 / < {1 / ',1 / 2}� p min �  provided that 
�� � � �� � � �L L Bn m

q
n m( )( ) ( )1 1 (0,0) 1 1log      and g�� �� �� ( )   with κ >1. For more information as 

well as a sample of past studies regarding the development and applications of the operator � �, ,g , 
we refer the readers to see [26-30] and their references.

In this paper, we study the operator � �, ,g  whenever the mapping Λ  belongs to a new class differs 
from those in [25]. In fact, we assume that Λ( , ) = ( )l t f lt , where f C� �

1( ) , ′f  is convex and increasing 
function with ′f (0) = 0.

The main results of this work are the following:

Theorem 1.1  Let Λ( , ) = ( )l t f t , where f  in C1( )+  and ′f  is increasing and convex function with 
′f (0) = 0. Suppose that g�� �� �� ( )   for some κ >1 and �� �� �� �Lq n m 1 1  for some q∈ (1,2]. Then, 

there is a bounded real number Cp > 0  such that

M U U� � �, , ( ) ( ) ( 1( )
( 1)( 1)g Lp n m p Lp n m Lq n mC

qR R R R R R S S� � � � � � ��
� �
�

� 11 ) ( )g
� �� �� R R (5)

for all 1 / 2 1 / < {1 / ',1 / 2}� p min � . 
The estimate (5) along with Yano’s extrapolation approach (see [16, 31]) lead to the following  

result:

Theorem 1.2  Let Θ  satisfy the condition (1) . Assume that g  and Λ  are given as in Theorem 1.1.  

	 1.	 If �� �� �Bq
n m(0,0) 1 1( )   with q >1, then the estimate 

M U U� � �, , ( ) ( ) ( ) (0,0) (( ) 1g Lp n m p Lp n m Bq
nC g

R R R R R R R R S� � � �� � � �
� �

�
�� � �

�
�
�

�
�
�1 1 )Sm

		  holds for 1 / 2 1 / < {1 / '1 / 2}� p min � ;  
	 1.	 If �� �� �L L n m( )( )1 1log   , then the estimate 

M U U� � �, , ( ) ( ) ( ) ( )(( ) 1g Lp n m p Lp n m L logL nC g
R R R R R R R R S� � � �� � � �

� �
�

�� � �� �1 1 )Sm

		  holds for all 1 / 1 / 2 < {1 / 2,1 / '}p � min � . 

Remark
	 1.	 The assumptions on Θ  in Theorem 1.2 are the weakest assumptions in their particular classes. In 

fact, they are optimal (see [12, 14]).
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	 2.	 The authors of [30] proved the Lp (1 < < )p ∞  boundedness of Θ,0,1 whenever �� �� �� �Lq n m 1 1  

with q >1. Hence, since L B L Lq n m
q

n m n m     � � � � � ��� � � � � �1 1 (0,0) 1 1 1 1( ) ( )( )log , then Theorem 

1.2 extends and improves the results in [30].
	 3.	 When we consider the case g�� �� �� ( )   with κ > 2, we obtain the boundedness of � �, ,g  for the 

full range of p� �(1, ).
	 4.	 For the special case � � 0, Theorem 1.2 proves that � �, ,g  is bounded on Lp n m( ) ×  for 

1 / 2 1 / < {1 / ',1 / 2}� p min � , which is the main finding in [17]. Hence, our results fundamentally 
improve the main results in [17].

	 5.	 The surfaces of revolutions � �
�
( , ) = , , ( , )� � � � � �� � considered in Theorems 1.1 and 1.2 cover 

various substantial natural classical surfaces as Λ( , ) = ( )l t lt m  with m > 0 , �( , ) = ( ) (1 )2l t lt ltln �  and 

�( , ) = 1l t e ltlt � � . 

2. Preliminary Lemmas

In this section, we establish some auxiliary lemmas which will be needed to prove the main results. For 
� � 2 and a suitable mapping Λ  on  � �� , we define the family of measures { := : , }, , , , ,� �� � g l t l t l t� �  
and its corresponding maximal operators λg

* and Mg ,ν  on   n m× ×  by 

  n m l t t t l l
d

l t
K
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where | |,λl t  is defined similar to λl t,  but with replacing Θ  by | |Θ  and g  by | |g .
Let us start this section with the following result which is due to the authors of [25].

Lemma 2.1  Let �� �� �� �Lq n m 1 1  with q >1 be a homogeneous function of degree zero and satisfy 
(1). Suppose that � � 2 , �� �� �C1( )   and g�� �� �� ��    with κ >1. Then for all j k, ∈, a positive 
constant C  exists such that 

�l t gC, , ,� � (6)

�
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k q' jx y z dldt

lt
C x y
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,
�

�q' � (7)

where C C gg Lq n m, ( ) ( 1 1 )=� �
� �� �

� � �
� R R S S

, 0 < < 1
2

�
�q
, � �= {2, '}max , and λl t,  is the total variation of 

λl t, . 
The next lemma plays a key role in proving our main results.

Lemma 2.2  Let g , Λ  and Θ  be given as in Theorem 1.1. Then, there exists Cp > 0  such that 

   �h Lp n m Lp n m p gC*
( ) ( ) , ,( ) 
     � � � �

� � (8)
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and 

   Mg Lp n m p g Lp n mC, ( ) , ,
2

( )
( ) ( )� � 

     � � � �
� � ln (9)

for p� �( ', )� . 

Proof. It is clear that Hölder’s inequality gives 

|| |* ( , , )|

1

, 1( 1 1 ) ( )

/2

� �

�

�
l t L n m

t

t

w v s C g

lt

 �
� � � � �� �

��

� �

�
S S R R 

ll

l

n m

'

n mw l v t s l t d d
/2

1 1 ( , , ( , )) | ( , )| ( ) (� � � � � � � �
S S

 � � � � � � � �
�

� � )) ,dldt

which leads, by Minkowski’s inequality for integrals, to 
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Hence, to prove this lemma, it is enough to show that for any p >1, 

   �� �*
( ) ( 1 1 ) ( )

( ) . 
Lp n m Lq n m Lp n mC
R R R S S R R R� �
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� (10)

By the arguments employed in the proof of [Lemma 1, [25]], we get for ( , , )x y z n m� � �   , 
η η

ε εσ − −
′ ′− −×

≤ Θ
 1 1, ( )

ˆ ( , , ) 0.05 0.05 ;' 'q qq n ml t Lx y z C inxl inyt

η η

ε εσ σ −
′ ′− −×

− ≤ Θ
 1 1, , ( )

ˆ ˆ( , , ) (0, , ) 0.05 0.05 ;' 'q qq n ml t l t Lx y z y z C inxl inyt

η η

ε εσ σ −
′ ′− −×

− ≤ Θ
 1 1, , ( )

ˆ ˆ( , , ) ( ,0, ) 0.05 0.05 ;' 'q qq n ml t l t Lx y z x z C inxl inyt

 and 

σ σ σ σ− − +, , , ,ˆ ˆ ˆ ˆ( , , ) (0, , ) ( ,0, ) (0,0, )l t l t l t l tx y z y z x z z

� � � � � �C inxt inytLq n m q' q'� ( 1 1 ) 0.05 0.05 .
 
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�
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Let �(1) � � � n  and �(2) � � � m  be two Schwartz functions such that �(1) =1 x� �  for x ≤
1
2

, 

( ) = 0(1)� x� �  for x ≥1, �(2) =1 y� �  for y ≤
1
2

, and ( ) = 0(2)� y� �  for y ≥1. For l t, � � , let � �1,
(1)( ) =l x lx

 � �  
and � �2,

(2)( ) =t y ty

 � � . Define the sequence of measures �l t,� � by

 ( )  ( )  ( ) ( ) ( )ϑ σ σ σ σ− Ψ − Ψ + Ψ Ψ, , 1, , 2, , 1, 2, ,
ˆ ˆ ˆ ˆ ˆ( , , ) = ( , , ) (0, , ) ( ,0, ) 0,0, .l t l t l l t t l t l t l tx y z x y z x y z y x z x y z (11)

Hence, by a standard argument we obtain that 
η η

ε εϑ ± ±
′ ′− −×

≤ Θ
 1 1, ( )

ˆ ( , , ) 0.05 0.05 .' 'q qq n ml t Lx y z C inxl inyt (12)
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, /2 <0.05 /2
( , , ) = ( , , (� �

� �
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
sup ))) ,1� � �� ��
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�
dt
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( 1 1 ) , /2 /2

( , , ) = ( , ,� �
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� �
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S S R
sup (( )) ,lt dldt

lt

where 

� � � �1 1 2 1= 0.05 , = 0.05 ,� � � � � � � � �� � � � � � � � � �� �� �in d and in dm m n n 
��� �.

We notice that �1
1( )� �Lq n  and �2

1( ).� �Lq m  Hence, 

� �� � �� � � � � � � �� �U U M U( , , ) ( , , ) ( ) ( )( ,1 ,
1w v s V w v s C id id w vn m l t  

 ,, )

) ( )( , , )

)

1 ,
2

1

s

C id id w v s

C id

n m l t

n m l
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� �
  

  

M U

M M




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� ,,
3 ( )( , , )t w v s� �� � U

(13)

and 

� ��
� � �� � � � � � � �� �U U M U( , , ) ( , , ) 2 ( ) ( )(1 ,

1w v s V w v s C id id wn m l t  
 ,, , )

2 ) ( )( , , )

2

1 ,
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1

v s

C id id w v s

C id

n m l t

n m

� � �� �
� � �

� �
  

  

M U

M M

�

)) ( )( , , ),,
3

� l t w v s� �� � U
(14)

where 
τ

 indicates to the Hardy-Littlewood maximal function on τ . Therefore, by (11)-(14), the 
boundedness of 

τ
 and a bootstrapping argument, we obtain (10) which leads to (8). Finally, the 

proof of (9) comes directly from (8). Consequently, the proof of this lemma is complete. 
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Lemma 2.3  Suppose that � � 2 , g�� �� �� ��    with κ >1, �� �� �� �Lq n m 1 1  with 1 < 2q ≤ , and Λ  
is given as in Theorem 1.1. Then, for any set of functions { ( , , ), , },k j j k� � � �  on   n m× × , we have 

j k j

j

k

k

l t j k

Lp n m

dldt
lt,

1 1

, ,
2

1/2

( )
�

� �

� �

� � � �
�

�

�
�

�

�

�
�Z

R R R
�

�

�

�

�  ��
�

�
��

�

�
��

�
� �

�Cp g
j k

j k

Lp n m
, ,

,
,
2
1/2

( )

( )� �ln
Z

R R R

 (15)

for all |1 / 2 1 / |< {1,/2,1 / }� p 'min � . 

Proof. We point out that for � � 2, � �� � � � �� �� � � �2    � . So, the proof of this lemma will be given 
only whenever � � (1,2]. In this case, we have |1 / 2 1 / |<1 /� p '� , which leads to 2
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where  

( , , ) = ( , , )− − −w v s w v s . The last inequality is obtained by employing Lemma 2.2 with 
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Now, if 2
3 2

< < 2�
� �
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Therefore, the last inequality and (16) yield (15) for 2
3 2

< < 2�
� �

p . This completes the proof of this 

lemma.

3. Proof of main results

Let �� �� �� �Lq n m 1 1  for some 1 < 2q ≤  and g�� �� �� ��    for some κ >1. Set � �= 2 '�q . By 
Minkowski’s inequality, we obtain
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For � � , let { }��  be a set of smooth partition of unity over (0 ,∞) , which is adapted to the interval 
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where Cβ  does not depend on the lacunary sequence { ; }� �� � .
Define the multiplier operator { },Ψ j k  in   n m× ×  by ( ( ))( , , ) = ( ) ( ) ( , , ),� � �j k j kx y z x y x y z  Æ . 
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To prove Theorem 1.1, it suffices to show that a real number ε > 0 exists such that 
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for all 1 / 1 / 2 < {1 / ,1 / 2}p '� min � .
First, we estimate the L2-norm of F Uµ , ( )r  as follows: Parseval–Plancherel identity, Fubini’s 
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where � � (0,1)  and D x y z x yj k
n m

j k, = ( , , ) : ( , )� � � � �� �     . Next, we estimate the Lp-norm of 

F Uµ , ( )r  as follows: By employing Lemma 2.3 and Littlewood–Paley theory, we obtain 
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Consequently, interpolate (21) with (22), we get (20), which in turn with (18)-(19) finishes the proof 
of Theorem 1.1.

4. Conclusions

In this work, we established sharp Lp  estimates for the operator � �, ,g  whenever g�� �� �� ( )   
with κ >1, �� �� �Lq n m( )1 1   with 1 < 2q ≤  and Λ( , ) = ( )l t f t , where f  is C1 function, ′f  is convex and 
increasing mapping with ′f (0) = 0. The obtained estimates allows us to utilize the extrapolation argu-
ment of Yano to show that � �, ,g  is still bounded on Lp n m( )  × ×  under a weaker assumption on 
Θ ; that is Θ  lies either in Bq

n m(0,0) 1 1( ) � ��  or in L L n m( )( )1 1log  � �� . These assumptions are consid-
ered the weakest among their particular classes. In addition, we obtained Lp  boundedness of � �, ,g  
for the full range of p� �(1, ) provided that κ > 2. Our results generalize and improve several known 
results as the results in [1, 4, 5, 7, 11, 12, 14, 17].
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