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Abstract

In this paper, specific I” bounds for a class of Marcinkiewicz integral operators on product spaces
along surfaces of revolution are established whenever the kernel functions are rough in L(S"™* x S™™).
By virtue of the obtained bounds and an extrapolation argument, we prove that the aforementioned
operators are bounded on LP(R" xR™) under rather weaker conditions on the kernel functions.
The results in this work represent essential improvements and extensions of several results on
Marcinkiewicz operators.
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1. Introduction

Let 122 (t =n or m), R" be the Euclidean 7-space and S be the unit sphere in R’ equipped with
the induced Lebesgue surface measure dp,_ ().
For p, =¢, +id,, p, = ¢, +id,(c;,c,,d,,d, € Rwithc,,c, >0), let
0(&.£)g(sl.lc)
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where g is a measurable function on R, xR, and © is a function on R" xR™, which is measurable,
integrable over S" xS™, homogeneous of degree zero, and satysfying

[,.0€0dp ©=],..060dp ©)=0. W

For an appropriate function A: R, xR, - R, we let M, , , be the Marcinkiewicz operator along the
surface of revolution FA &, 0)= (5,{,A(|§| ,|§|)) given by

Mo o (U)aw,0,) = ( e o @005 dldtj , @
where U € C7(R" xR™ xR) and
—_ 1 —_ —_ —
A, W08 = oo [ U =E0=Cs = AGELIE DKo, (& O)ddL.

We point out that the operator M, , , 1s a natural generalization of the operator M ¢ related to the
surface FA &)= (5,A(|§|)) in the one parameter setting, which is defined by

1/2

0)g (|§|)

e[

1

ME U waw,) =| [, 12 [ U =Ew,, -y () =50 T ®)

The operator Mg, was initiated in [1] whenever y(l)=I and g=1. Precisely, the author of [1]
established the boundedness of Mf, on L” (R™) for p e(1,2] under the condition © e Lip, (S™™) for
some ¥ € (0,1]. Thereafter, the operator M(‘f)’g has been considered by many mathematicians, see for
example [2-10].

In this work, we are interested in studying the operator M, , .. When A=0 and p, =1=p,, we
denote the operator Mg, , by Mg ,. In addition, when g=1, then M, , reduces to the classical
Marcinkiewicz integral on product domains, which is denoted by M. The discussion of the operator
M, has attracted the attentions of many researchers for along time. Historically, the I” boundedness
of M, was begun in [11] in which the author established only the I? boundedness of M, whenever ©
belongs to the space L(log L)*(S"™" xS™™). Thereafter, the authors of [12] proved the I” boundedness
of M, for all p e (1,:0) under the assumption ® € L(log L)(S"" xS™ ), and also they mentioned that
similar argument as that in [13] gives the optimality to the condition ® € L(log L)(S"* xS™'). On
the other side, the author of [14] found that the operator M, is of type (p,p) for p € (1,00) provided
that ® e B[(IO’O)(S"’1 xS™ 1) with ¢ >1, and that the condition ® B;O’O) (S xS™™1) is optimal. Here,
B((IO"’)(S”_l x S™ 1) refers to the block space introduced in [15].

Later on, Yano’s extrapolation argument [16] was employed by the authors of [17] to find the L”
boundedness of M, o for |1/ p-1/ 2| <min{l/«',1/2} whenever the kernel function ® lies either in
the space L(log L)(S"™ xS™™) or in the space B{"?(S"" xS™™") and the mapping function g belongs
to V_(R, xR,) for some k >1, where V_(R, xR,) (for k¥ >1) is the class of all measurable functions g
satisfying

2" dldt
"g"V (]R xR ) jsup(.[ .[ | (l t)| J < oo
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The above results have motivated many mathematicians to study the Marcinkiewicz integral on
product spaces along surfaces of revolution of the form

‘ dldtj , @)

A%ganauwmpuum»:[ngx A @

where

AP (U=

] U,y EDy -0, $(E DK (6.OdedS.
$PrP2 Jllst il

Under various assumptions on the mappings v, ¢, ®, and g, the operator ./\/lg)’;f was studied by
many authors (see [18-24]).

Very recently, the authors of [25] discussed the operator M, , , for several classes of A. In fact,
they proved its boundedness on I”(R" xR™ xR) for all |1/2 1/p| <min{l/k",1/2} provided that

®e Llog L)(S"* xS™ U B;O 0(S" 1 xS™1) and ge V. (R, xR,) with k¥ >1. For more information as
well as a sample of past studies regarding the development and applications of the operator M, , .,
we refer the readers to see [26-30] and their references.

In this paper, we study the operator M, , , whenever the mapping A belongs to a new class differs
from those in [25]. In fact, we assume that A(l t)=f(t), where f € Cl(]R ), f' is convex and increasing
function with f'(0) =0.

The main results of this work are the following:

Theorem 1.1 Let A(l,t) = f(tf), where f in Cl(R+) and f' is increasing and convex function with
f'(0)=0. Suppose that g eV (R, xR,) for some xk >1 and ® € L* (S"‘l X S’"‘l) for some q €(1,2]. Then,
there is a bounded real number C, >0 such that

K

HM@),A,g (u)“Lp(RnXRme) <C, m||u||Lp(Ranme) ”®"

19 (s Lism 1y ”g"vK (R, xR,) 6))

for all |1/2—1/p|<min{1/1<',1/2}.
The estimate (5) along with Yano’s extrapolation approach (see [16, 31]) lead to the following
result:

Theorem 1.2 Let © satisfy the condition (1). Assume that g and A are given as in Theorem 1.1.
1. Ifee B;O’O) (S"! xS™1) with g >1, then the estimate

“%Ag(u)“Lp(Ranme) p ”g”v (R <R )”u"Lp(Ranme) (1+"®”3<0 0) (gnL,sm- 1)}

holds for |1 /2 —1/p| <min{l/x'1/2};
1. If ® e L(log L)(S" ' xS™™), then the estimate

HM® A g( )HLp(Ranme) p ||g||V (]R xR ) " ||Lp(]Rn><]Rm><]R) ( + ||®||L(logL)(Sn_l><Sm_1))

holds for all |1 I p-1/ 2| <min{l/2,1/«"}.

Remark

1. The assumptions on ® in Theorem 1.2 are the weakest assumptions in their particular classes. In
fact, they are optimal (see [12, 14]).
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2. The authors of [30] proved the I” (1 < p <) boundedness of M, ,, whenever ® e L’ (S”’l X Sm’l)
with ¢ >1. Hence, since L’ (S”‘l X Sm‘l) < BPO(S" xS U Llog L)(S" xS™™), then Theorem

1.2 extends and improves the results in [30].

3. When we consider the case g € V, (R, xR,) with k > 2, we obtain the boundedness of M, , , for the
full range of p € (1,).

4. For the special case A=0, Theorem 1.2 proves that M, . is bounded on L’(R"xR™) for
|1 12-1/ p| <min{l/«",1/2}, which is the main finding in [17]. Hence, our results fundamentally

improve the main results in [17].

5. The surfaces of revolutions I' A(g,g ) :( N

) considered in Theorems 1.1 and 1.2 cover
various substantial natural classical surfaces as A(l,t) = (It)™ with m >0, A(l,¢t) = (it)* In(1 + I¢) and

Al t)=e" =1t —1.

2. Preliminary Lemmas

In this section, we establish some auxiliary lemmas which will be needed to prove the main results. For
v 22 and a suitable mapping A on R, xR, we define the family of measures {4 , ,,, =4, :[,teR }
and its corresponding maximal operators /’L and M, , on R" xR™ xR by

1
J.J‘J.Rnx]RmeUdll’t - —.[1/2ts\g\g Il/zzs\g\slu(g’g’[\(|§| ’|§|))K®’g (6.¢)ded,

1"1¢"2

Z,;(Z/l)= sup | |4, I*UI,

l,[ER+
and

dldt
M,, )= supj j ||xl,|*u|

jikeZ®v
where | 2;, | 1s defined similar to 4,, but with replacing ® by |®| and g by | g|.
Let us start this section with the following result which is due to the authors of [25].

Lemma 2.1 Let ® e L (S”‘l X S"H%%with g >1 be a homogeneous function of degree zero and satisfy
(1). Suppose thatv>2, Ae C' (R, xR,) and g€V, (R+ X R+) with k >1. Then for all j,k € Z, a positive
constant C exists such that

[4:]1= Ceo ©®)

+72’7

dldt g )

2n
z)‘ —<C ®(lnv) ‘xv ‘ qe

i '

vj+1 vk
ij J.Vk
1 . ..
where Cg@ =C ||g||V (R, <2,) ||(~)||Lq (&n-Lygm-1)> 0<n< 2_(1” & =max{2,«"}, and "),l’t " 1s the total variation of

A,
The next lemma plays a key role in proving our main results.

Lemma 2.2 Let g, A and © be given as in Theorem 1.1. Then, there exists C, >0 such that

| 2 ) ||

<
LP(R"mexR)_H U HLP(Ranme) Cp,g,@ (8)
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and

IM,, @) C,eo(Inv)* || U]

<
IP (R xR™MxR) LP (R xR™MxR) (9)
for p e (kx',).

Proof. It is clear that Holder’s inequality gives

I l)l’l,t I*Z/l(w,v, 3) |K!S C”@"Ll(gn—lxgm—l) H 8 Hg;{(]Rer]R+)

t 1 /
< [ [ s om0 100 5= AGO)* 10,0 1dp, G, )l

t/21/2

which leads, by Minkowski’s inequality for integrals, to

N 1/x'

126 @O p i < ClO 1 n1,emr, [ € s e e,

, 1/
X(H O';( L{|K ) HL(p/K,)(]Ranme)j )
where
1 0(,¢)
J-J..[RanmeudGl’t PP L/zts\g\g ng‘é‘slU(é,C,AQﬂ,|C|)) |§|”’P1 |§|’”’Pz dodt

and

o, (U) = sup | loy, 1*U].

l,te]R+

Hence, to prove this lemma, it is enough to show that for any p >1,

EX < C[©]| g gn-1,gm1, 1 U

TP (R xR™xR) ~ IP (R"xR™xR) (10)

By the arguments employed in the proof of [Lemma 1, [25]], we get for (x,y,z) e R" xR™ xR,

‘6“ (x,y,z)‘ = C”@"Lq(S"_lem—l) |0-05inxl|_£ 0.05inyt|_£ ;

_n
qe

‘&z,t (x,5,2) =6y, (O,y,z)‘ < C||®||Lq(Sn_1><Sm_l) |0.05inxl 0.05inyt|_£ ;

_n
)

0.05inyt

61(x.,2) = 61,(x,0,2)| < C[©] g -1 mr, 0:05inxl] '

and

16,,(x,5,2) = 6,,(0,5,2) = 6,,(x,0,2) + 6,,(0,0,2)

e .
< C”@"Lq (Sn_lem_l) |0-05lnxt|q’g’ |0.05lnyt|q’8y .
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Let ¥V eS(R”) and ¥@ eS(]R’”) be two Schwartz functions such that l;(T)(x)=1 for |x| S%,

- —

(\P(D)(x) =0 for|x| >1,¢@ (y) =1 for|y| < %,and (@)(y) =0 for|y| >1.Forl,teR", let \?1\,1(35) = @ (lx)
and ‘?;(y) = @ (ty). Define the sequence of measures {Sz,t} by
lgl,t(xh)hz) = OA-l,):(‘xhy’z) - \?1: (x)é-l,t(o’y’z) - l?;,t (y) é\-l,t(x’o’z) + \?; (x)\?;,t (y)é-l,t (0’072)' (11)

Hence, by a standard argument we obtain that

‘9” (x,y,z)‘ < C||®"L‘1(s”*1xs’"*1) |0.05inxl|tﬁ 0.05inyt|i£ . (12)

Set
1

V) w,v,s) = (IR|9M Ul (w,v,s)|2)2 9" () = sup 9, * u],0.05in

lteR

O'l(,lt)U(LU,U,S) = sup Ull |Z/I(w,v —C,s— f(lt))|®2 (C ))#dg,

LieR 1/2<¢|<0.05int\ J1/2
’ +

Gl(f)l/{(w,v,s) = sup Utt/zk/{(w —&,u,5- f(11))]©, (ﬁ)j%dé,

l1eR  ©1/2<|é<0.05inl
’ +

t

dldt

Ll/2|1/l(w,v,s - Fan)]

(3) =
Gl,t Z/{(wy v, S) - ||®||Lq (Snflemil) lst:lRp 49
’ +

where
0, (&)= 0.05injsrH ©(&.¢)|do,, (¢) and ©,(¢) = o.osiank1 ©(&.¢)|do, (£).
We notice that ®, e L4(S") and ©, € L4(S™). Hence,
9 (U)w,v,5) <V (U) @w,v,5) + C((MRn ®id_, ®id_,)o al(}))(m(w,u,s)
+Clid, ® M, ®id ,)oof) ) Uw,v,9) (13)
+C( M, ® M, ®id ;) ool |U)w,v,5)
and
o’ (U)w,v,8) <V (U) w,v,5) + 2C((MRn ®id_, ®id_,)o aﬁ))(uxw,v,s)
+20(ian oM, ®idR1)oa§j))(L{)(w,u,s) (14)
+2C(MRn OM, ®idR1)oo§j))(U)(w,u,s),

where MRT indicates to the Hardy-Littlewood maximal function on R". Therefore, by (11)-(14), the
boundedness of MRT and a bootstrapping argument, we obtain (10) which leads to (8). Finally, the

proof of (9) comes directly from (8). Consequently, the proof of this lemma is complete.
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Lemma 2.3 Suppose thatv 22, g€V, (]R+ X R+) with k >1, ® e L? (S”’l x qu) with1<q<2, and A
is given as in Theorem 1.1. Then, for any set of functions {H, ;(-,,"),Jj,k € Z} on R" xR"™ xR, we have

1/2

]+1 k+1 dldt 1/9
2
%[ Tl <Cpanton)| Bl w
J,keZ ] J,keZ
: IP (R xR™xR) LP (R xR™xR)

forall |1/2-1/ p|<min{1,/2,1/k}.

Proof. We point out that for k > 2, V, (R, xR, ) 2V, (R, xR, ). So, the proof of this lemma will b% given

only whenever x e (1,2]. In this case, we have |1/2-1/ p|<1/«’, which leads to W <p< 2 LS {;
K— -K

2<p< 221< , then by duality, there is a function U belongs to the space L*® (R” x R™ x R) such that
"U"L(p/Q), (R'<R™xR) <1 and
]+1 k+1 dld 1/2 2
2 t
X ) ] et
J.ReZ vk

LP (R xR™xR)
Sl R+

:'UJ.R”XRmXRj;Z'[ J;e ‘A‘l,t ]k( ,U, 8 ‘ dldt|U(w v, s)|dwdvds
HER Ty

Thanks to Schwartz’s inequality, we have

2y, 1, 0,0,9) < €00 et s, ] ) j j [[osmal0E0)]

7tl

2 2
[y = 16,0-12,5- AGO) [g0f do, (©)dor, ()
which leads by Hoélder’s inequality to
]+1 k+1 dldt 1/2 ?
2
Z J- ,[ ‘)‘lt T SC||®||Lf1(8"—1xs’"—1)
Jj,keZ ]
vE IP (R xR™MxR)
K 2
H. M, ,
X||g||VK(R+><R+) j’kZE:Z‘ J,k‘ P12 @ \g‘2 v 1(P/2) (R RMR)
1/2
< 2 " ~
<C(Inv)? ||®||Lq(sn—1><§m—1)||g||VK(]R+><]R+) L;Z‘Hj,k‘ J x A o V) 015 gy

IP (R xR™xR)

vz
2
<C2g®(1nv) [Z ‘Hﬂk‘ J ,
j,keZ
LP (R xR™xR)
where 6(—w,—v,—s)=U(w,v,s). The last inequality is obtained by employing Lemma 2.2 with
g V. (R, xR,).

2-K

|2—K
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Now, if

2 < p <2, then we deduce by duality that there is a collection of functions f; , (w,v,s,l,t)
c—

on R"xR™ xRxR, xR, which satisfies

<1

” ijk ||L2([vk’vk+l]x[vj’vj+1] M)

Tt T2 (g crm )
and
VL R+ dldt 12
2
21 T2
PRV IP (R xR™xR)
vj+]. k+1 d dt
gt B N a8
s , 1/2
SCp(lnv)“Q(fj’k)HL(P’/Z)(R”mexR) LZ ‘Hj,k‘ J ’
ket IP (R"xR™xR)
where
v]+1 k+1 dld
Af; 1) (w,v,s) = j j ‘/’L” *fin(Ww,v,8,1 t)‘ t
=

As p'>2, the duality gives that there is a function B lies in e (R™ xR™ xR), which satisfies
<1 and

"B ||L(P" 2) (BEMR)

HQ(fj,k)H (P12 (R R R)

v]+1 Vk+1

Z .m.RnkaxR J. _[ ‘)’lt fir,v,s,1, t)‘ MB(w v,s)dwdvds
Vj V
Vj+1 k+1 (17)

2 dld

<ClO] g gr1,ensy | 2 j £, (w,0,5 ,u)\ d

JkeZ ik L(p'/z)(Ranan)
* 2
X"g||v’<(R+XR )‘ e B 02y (R"xR™xR) - Cg@.

Therefore, the last inequality and (16) yield (15) for 3 2K 5 < p <2. This completes the proof of this
K p—

lemma.

3. Proof of main results

Let © L’ (S”’l xSm’l) for some 1<g<2 and geV,(R,xR,) for some x>1. Set v=27". By
Minkowski’s inequality, we obtain
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Mo p.¢(U)(w,0,5)

S0

Jj,k=0

1P14P2 Iz Jj- 1t<‘g‘<2 Jt.[ _k‘ll<\§\52‘kz K@,g(§7g)
xUw - &,v-¢,s - A&].[6 dsd |

2172 2 dldt
: 27 -1)(2% -1) [IIR xR, [ > Uaw,.s )| ]

For a € Z,let {®,} be a set of smooth partition of unity over (0,), which is adapted to the interval
-a-1 _,—oa+l7 _

[v* v =7, and satisfyes the following:

2 dldtj (18)

®,eC”, 0<d, <1, D@, (I)=1,

o€e”Z
(®,)c I, and a'0, (1)) Gy
su, cl, and |———|<—,
pp a’/ — a dlﬁ l'B

where Cﬂ does not depend on the lacunary sequence {v*;B e Z}.
Define the multiplier operator {¥;,} in R*xR™ xR by (W)(x,y,z)=d)j(|x|)(1>k(|y|)l/@x,y,z).
Thus, for any U € C;(R" x R™ x R), Minkowski’s inequality gives that

2 dldt
[”Rw&'ll’t* oo J _C,Z‘Z]:””(u)(w’v’s)’ (19)
where
2 dIdt
For (U)(w,v,s) = [ j LR 7w, vs t)\ ) ,
ju,,(U)(w,v,s,l,t) - Z)’l,t *qjjﬂl,kﬂ* U(w,v 3)% RS SN AR (@.1).
J.keZ vl pIt

To prove Theorem 1.1, it suffices to show that a real number & > 0 exists such that

E(rklul)
|7, <C, omv)22 " [Z] - (20)

IP (R xR"xR)

for all |1/p 1/2|<m1n{1/1< ,1/2}.

First, we estimate the I*-norm of F..U) as follows: Parseval-Plancherel identity, Fubini’s
Theorem and Lemma 2.1 produce

..,

12 (R"xR™xR)
j+1 k+1

< Z J.J.J-D _[ J. ‘xllt(x y,z)‘ dldt ‘Z/{(x y,z)‘ dxdydz

j.keZ Juktr

LAl(x, y,z)‘2 dxdydz (21)

2
yvj‘ q¢

<Coatn? T, o]

]+/1 k+r

< CZg(a(an) g-e(Iritlul) z J:U

]+s k+r

= Cz pgon v)22-eri "u”L 2(R"

~ 2
U(x,y, 2)‘ dxdydz

xR™xR) ’
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where ¢ €(0,1) and D, , = {(x,y,z) eR"xR™"xR: (|x| ,|y|) €Z;x Ik}. Next, we estimate the L”-norm of
F,.(U) as follows: By employing Lemma 2.3 and Littlewood—Paley theory, we obtain

H]:W (u)HLp(Ranme)

Vj+1 Vk+1 2dldt 2
<cf ST o ) G
J,keZ

IP (R"xR™xR)

1/2 @2)
<C,,o(nv) ( D e U\z]

jiked LP (R xR™MxR)
<C K
<Ce0 m”u [P

Consequently, interpolate (21) with (22), we get (20), which in turn with (18)-(19) finishes the proof
of Theorem 1.1.

4. Conclusions

In this work, we established sharp L” estimates for the operator M, , , whenever geV (R, xR,)
with k >1, @ e L1(S" ' xS™!) with 1< ¢ <2 and A(,,t) = f(t/), where f is C* function, f' is convex and
increasing mapping with f'(0) = 0. The obtained estimates allows us to utilize the extrapolation argu-
ment of Yano to show that M, , . is still bounded on I’(R" xR™ xR) under a weaker assumption on
®; that 1s O lies either in B((IO’O)(S”’1 xS™) or in L(log L)(S"™ xS™™). These assumptions are consid-
ered the weakest among their particular classes. In addition, we obtained L” boundedness of M, Ag
for the full range of p € (1,) provided that k > 2. Our results generalize and improve several known
results as the results in [1, 4, 5, 7, 11, 12, 14, 17].
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