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Abstract
This research explores properties of a bi-convex class of functions that are associated with a leaf-
shaped region by utilizes the subordination principle and q-calculus. The study also analyzes limita-
tions on coefficients, with a particular emphasis on |a2| and |a3|. Furthermore, it evaluates Fekete 
Szegö inequalities for functions within the bi-convex class. The findings are supported by figures, 
examples, and references to relevant studies.
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1. Introduction and Definitions

Let f be a holomorphic function defined within the open unit disc , where { :| | 1}z z= Î <� . A func-
tion can be categorised as belonging to a specific class  if it can be expressed in the following manner:
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Furthermore included in the collection  are univalent functions satisfying the normalising 
requirements:

f(0) = 0  and f′(0) = 1.� (2)

An analysis function   defined within the domain  is referred to as a Schwarz function if it meets 
the conditions  (z) < 1 and  (0) = 0. In the context of a class  comprising two functions, f and f it is 
stated that f is influenced by f denoted as f f≺ , when there exists a Schwarz function   that  (z) =  
f( (z)), for every complex number ( )z Î .

The class P is closely related to Carathéodory functions, which are described by Miller [27]. These 
functions are characterized by the following features:

Re{ ( )} 0, and  (0) 1 .z zd d> = " Î

A Maclaurin series expansion provides a way to represent a function ( )zd , within the class P. It can 
be written as;
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In this expression the coefficients dn must satisfy the condition;

| | 2, for all 1.n nd £ ³ (4)

This concept aligns with Carathodorys Lemma, a known result discussed in the reference by Duren [20]. 
Essentially a function d belongs to the class P if and only if it satisfies the condition;

1( ) , ( ).
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For any function f in the category , an inverse function denoted by f 1 exists. The inverse function 
is defined as follows:
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A function ( )f z Î is called  bi-univalent when its inverse function 1( ( ))f V-  is also bi-univalent. The 
set Σ includes all bi-univalent functions, in . Check out the table below for some examples of func-
tions, in the class Σ and their respective inverse functions.

Table 1: Certain univalent functions along with their inverses.
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Ma and Minda [26] developed the class ( )K À  by use of subordination. They put up their method as 
follows:

( )( ) : 1 ( ), ( ) .
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zK zf zf z
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≺ 

In this formula, ( )zÀ  denotes a function with a positive real component and is normalised in accor-
dance with criteria (2). The table below illustrates the diverse methodologies employed by several 
writers to delineate subclasses of functions by selecting particular forms for À.

Table 2: Certain categories of functions are characterized by subordination.

( )zÀ Author/s Reference Year

1 z+ Sokol and Stankiewicz [33] 1996

1
z

z-
Piejko and Sokól [29] 2012

21z z+ + Priya and Sharma [30] 2018

3 31z z+ + Singh and Kaur [32] 2021

Figure 1: The image of ( )À   is displayed in a leaf-shaped region. Here, 3 3( ;1) 1 .z z zÀ = + +  

Quantum calculus, also known as q-calculus, extends beyond the conventional framework of 
ordinary calculus by incorporating the parameter q ∈ (0,1), thereby generalizing classical analyti-
cal techniques. This field has garnered significant interest due to its deep connections with physics, 
quantum mechanics, and Geometric Function Theory (GFT). A foundational resource for understand-
ing q-difference calculus and its diverse applications is the work of Gasper and Rahman [24], which 
provides a comprehensive exposition on the subject. Central to the study of analytic functions within 
this framework is the q-difference operator q¶ , which plays a crucial role in function theory. Notable 
advancements in this area include the work of Seoudy and Aouf [31], who extended q-calculus to func-
tions within the unit disc, further enriching GFT.  For further exploration, numerous classical and 
contemporary studies provide valuable insights, including [1, 3, 6–13, 17, 18, 25, 28, 35].

Recently, Alsoboh and Oros [7] investigated a particular class of bi-univalent functions connected to 
the leaf-like domain associated with q-calculus. The study concentrated on the definition that follows:
Definition 1.1: A function f ∈  is considered a member of the class ( , ( ; ))q z qlå À  if it has the form (1) 
and satisfies the following subordinations:

( )( )(1 ) ( ) ( ; ), ( ),q
f z f z z q z

z
l l- + ¶ À Î≺  � (6)
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where (0; ) 1, 1q lÀ = ³ , and

3

3
(1 ) (1 )( ; ) 1 ,

2 (1 ) 2 (1 )
q z q zz q

q z q z
+ +æ öÀ = + + ç ÷+ - + -è ø

� (7)

where 

( ) ( ) , 0,

( ) ( )
00

, 1 ,

 

, 0
( )

 q

f z f z z
z qz

f z f
z

q i

i
z q

f

if z
f f

-

-ì ¹ï -ïï¶

ï

¢= ® ¹
¢

í
ï =ï
î

Recent works by Amourah et al. [14] established the starlike class ( ; ( ; ))q z q* À , which pertains to 
the leaf-like domain within . This class is defined as follows:
Definition 1.2: A function f ∈  is considered a member of the class ( ; ( ; ))q z q* À  if it has the form (1) 
and satisfies the following subordinations:

( )
( ; ), ( ),

( )
qz f z

z q z
zy

¶
À Î≺  � (8)

where ( ; )z qÀ  of the form (7).

Inspired by the articles of Soboh and Oros [7] and Amourah et al. [14], we apply the discussed ideas 
and make use of the subordinating idea q-calculus. We thereby derive a bi-convex class connected 
with the leaf-like domain inside the open unit disc .
Definition 1.3: A function f ∈  is considered a member of the class ( ; ( ; ))q z qÀ  if it has the form (1) 
and satisfies the following subordinations:
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where ( ; )z qÀ  of the form (7).

Remark 1.4: The unit disk  undergoes a transformation into a region with a leaf-like shape using the 
analytic and univalent function ( ; )z qÀ . This function exhibits symmetry with respect to the real axis 
and fulfills the conditions (0; ) (0; ) 1qq qÀ = ¶ À = .

(a) The image of ( ; ) wi h 1 tq q -À ® (b) The image of ( ;0.89)À 
Figure 2: Continues.
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The primary objective of this work is to investigate the properties of bi-univalent functions asso-
ciated with the leaf-like domain in . This section, along with supporting examples, provides a clear 
definition of the class under consideration. In Section 3, we derive coefficient estimates and analyze 
the Fekete-Szegö functional for the newly introduced class. Furthermore, leveraging the theorems 
established in the preceding sections, we present corollaries that align with the specific scenarios 
under discussion.

2. The Bi-Convex Class ( )( ; ) z qS À

In this section, we employ the q-difference operator and the subordination principle between analytic 
functions, which were previously mentioned, to present a rigorous mathematical characterization of 
the newly introduced class ( )( ; )z qS À  of bi-univalent functions affiliated with a leaf-like domain.

Definition 2.1: A function f of the type (1) belongs to the class ( )( ; )z qS À  if it satisfies the specified    
subordination conditions:

F
¶

= + À Î
¶

≺ 
2 ( )

( ; ) 1 ( ; ), ( ),
( )

q

q

z f z
z q z q z

f z � (10)

and

(c) The image of ( ;0.73)À 

(e) The image of ( ;0.1)À 

(d) The image of ( ;0.54)À 

(f) The image of ( ) wit 0 h q +À ®
Figure 2: The figure shows the leaf-shaped region ( ; )qÀ � .
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with ( ; )z qÀ  of the form (7)  and g = f –1.

Remark 2.2: We wish to underscore that the class ( )( ; )z qS À  is non-empty. To elaborate, let us exam-
ine the functions defined by:

J
J* = <

-
( ) , | | 0.55.

1
zf z

z � (12)

It is evident that * Îf  and, furthermore, S* Îf  together with its inverse: 

VV J
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-
* = <

+
1( ) , | | 0.55,

1
f � (13)

via means of the notations defined in equations (10) and (11), we may determine, via a basic computa-
tion, that:
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Also, for all Îz , F J c J- =( ; ) ( ; )z q z q , which implies that F c= ( ; ) ( ; ).q q

We utilize GeoGebra Classic 6 to generate visual representations of the boundary denoted as ¶, 
employing the functions À and c , as presented in Table 3. This approach is particularly applicable in 
situations where the conditions J £| | 0.55  and Î (0,1)q  are satisfied. It is essential to acknowledge that 
À is a univalent function in . Consequently, the relationships F À≺( ; ) ( ; )z q z q  and c À≺( ; ) ( ; )z q z q  
are valid. These relationships are substantiated by the following facts: F c= = À =(0; ) (0; ) (0; ) 1q q q , 
F Ì À ( ; ) ( ; ),q q  and c Ì À ( ; ) ( ; )q q . For further clarification, please refer to Figure 3.

Example 2.3: if q → 1-, then S À ( ; ))( z q  is reduced to ( )S + +
3 31z z  defined by

(a)  1 and 0. 9 4 .q J-® = (b) 1  and 0.41.q J-® =

Figure 2: Continues.
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(c)  1 and 0.55 .q J-® = - (d)  0.86 and 0.49.q J= =

(f)  0.58 and 0.49.q J= =(e)  0.86 and 0.3.q J= =

(g)  0.36 and 0.55.q J= = - (h) 0.36 and 0.51.q J= =

Figure 3: The image of qÀ( ; )ie q  (black color) and qF ( ; )ie q  (red color) with several values of 
J q pÎ,  and [0, 2 ).q
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3. The bounds of the coefficients and the Fekete-Szegö functional within the class ( ) ( ; )z qS À

Theorem 3.1: Let SÎf  of the form (1) be included in the class ( )( ; )z qS À . Then
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proof: If ( )SÎ À ( ; )f z q , then, as per Definition 2.1, the existence of certain analytic functions  1 2a d  n  
may be established. These functions fulfil the requirements = = 1 2(0) (0) 0, and V< < 1 2| ( )| 1,| ( )| 1z  
for every V Î,z .
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and
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By comparing the relevant coefficients in equation (19) and equation (20), we can deduce the 
following.
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Adding (23) and (24), with doing some calculations, we get
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Substituting the value of ( )+� 2 2
1 1  from (26), we obtain

é ù- +æ ö- + = +ê úç ÷+è øë û
� 2

2 2 2
(3 ) 12[2] [3] 1 [2] ( ).
(1 ) 8q q q

q qa
q

Moreover,
+= +

é ù-æ ö- +ê úç ÷+è øë û

� 2
2 2 2

1 ( ).
(3 %)16[2] [3] 1 [2]
(1 )qq q

qa
q
q

(27)

Applying (4) for the coefficients � 2 2a d  n , we obtain
+£

é ù+ -ë û
2

1 ,
8[2] [3] (1 ) 4[2]q q q

qa
q

By subtracting (24) from (23), and using =� 2
1 , we get

( ) ( )+- = -� 2
3 2 2 2

12[2] [3] .
4q q

qa a � (28)



� 219

Then, in view of (26), the (28) becomes
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Thus applying (4), we conclude that
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Theorem 3.2: For any m Î�, consider f defined as in equation (1), which belongs to the class ( )( ; )z qS À .
Then,
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proof: If Î À( ( ; ))z qf  is expressed in the manner (1), then from (27) and (28), we obtain
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This finishes the proof of Theorem 3.2.� 
Theorems 3.1 and 3.2 yield the following corollary, which is typically associated with Example 2.3.
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Corollary 3.3: For any m Î�, consider f defined as in equation (1), which belongs to the class ( )( ; )z qS À .
Then, we can state the following

m
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m m

ì - £ï
ï

£ £ - £ í
ï
ï - - ³
î

 2
2 3 3 2

1 2, |1 | ,
12 31 7, | | ,

482 2 1 21 , |1 | .
8 3

a and a a

4. Conclusion

This paper investigates coefficient issues pertaining to a newly established subclass of bi-univalent 
functions within the domain , as specified in Definition 2.1. This subclass, represented by À( ( ; ))zK q , 
has been extensively analysed. We have established bounds for the second and third Taylor-Maclaurin 
coefficients, |a2| and |a3|, for functions inside this class. Furthermore, we have supplied estimations 
for the Fekete-Szegö functional, therefore augmenting our comprehension of the geometric and ana-
lytic characteristics of these functions. These findings establish a foundation for additional research 
into coefficient inequalities and associated extremal issues within the theory of bi-univalent functions.  

In future studies, one could investigate the maximum bounds of the Zalcman conjecture and ana-
lyze Hankel determinants for the classes of bi-convex and bi-close-to-convex functions. These direc-
tions present promising opportunities for novel discoveries and deeper exploration in the field.
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