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Abstract

This research explores properties of a bi-convex class of functions that are associated with a leaf-
shaped region by utilizes the subordination principle and g-calculus. The study also analyzes limita-
tions on coefficients, with a particular emphasis on |a,| and |a,|. Furthermore, it evaluates Fekete
Szegd inequalities for functions within the bi-convex class. The findings are supported by figures,
examples, and references to relevant studies.
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1. Introduction and Definitions

Let f be a holomorphic function defined within the open unit disc U, where U={ze C:|z|<1}. A func-
tion can be categorised as belonging to a specific class A if it can be expressed in the following manner:

f(z)=z+ianz”. (1
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Furthermore included in the collection S are univalent functions satisfying the normalising
requirements:

f(0)=0 and f'(0) = 1. 2

An analysis function ¢ defined within the domain U is referred to as a Schwarz function if it meets
the conditions s(z) < 1 and s(0) = 0. In the context of a class .4 comprising two functions, f and fit is
stated that f is influenced by f denoted as f < f, when there exists a Schwarz function s that s(z) =
f(3¢(2)), for every complex number (z € U).

The class P is closely related to Carathéodory functions, which are described by Miller [27]. These
functions are characterized by the following features:

Re{d(2)} >0, and 6(0)=1 YV zeU.

A Maclaurin series expansion provides a way to represent a function d(z), within the class P. It can
be written as;

8(z)=1+) 6, 2", (ze ). (3)
n=1
In this expression the coefficients 6 must satisfy the condition;
|0, <2, forall n2>1. (4)

This concept aligns with Carathodorys Lemma, a known result discussed in the reference by Duren [20].
Essentially a function 6 belongs to the class P if and only if it satisfies the condition;

5(z) <2 (ze D),
1-z

For any function fin the category S, an inverse function denoted by f* exists. The inverse function
is defined as follows:

z2=["(f), ¢=f("() (ro(f)%; el <n(fsze U}
where
[ =8(5)=¢ -0, +(2a; —a,)s” - (a, +5a, —5a,a,)¢" +---. (5)

A function f(z) e S is called bi-univalent when its inverse function (' (¢)) is also bi-univalent. The
set X includes all bi-univalent functions, in U. Check out the table below for some examples of func-
tions, in the class X and their respective inverse functions.

Table 1: Certain univalent functions along with their inverses.

-_c ey=_5
(@) =—— 1) T ;
22 _1
é(Z)Zﬁ £, (g)=-log(1-¢)
f3<z>=§1ogﬁfjj )=
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Ma and Minda [26] developed the class K(X) by use of subordination. They put up their method as
follows:

K(N)={feA: 1+m<x(z), (zeU)}.

f'(2)
In this formula, X(z) denotes a function with a positive real component and is normalised in accor-
dance with criteria (2). The table below illustrates the diverse methodologies employed by several
writers to delineate subclasses of functions by selecting particular forms for X.

Table 2: Certain categories of functions are characterized by subordination.

X(z) Author/s Reference Year

f+z Sokol and Stankiewicz [33] 1996

z Piejko and Sokdl [29] 2012
1-z

N ) Priya and Sharma [30] 2018

o m Singh and Kaur [32] 2021

Figure 1: The image of X(U) is displayed in a leaf-shaped region. Here, R(z;1) =z + 1 +2°.

Quantum calculus, also known as g-calculus, extends beyond the conventional framework of
ordinary calculus by incorporating the parameter q € (0,1), thereby generalizing classical analyti-
cal techniques. This field has garnered significant interest due to its deep connections with physics,
quantum mechanics, and Geometric Function Theory (GFT). A foundational resource for understand-
ing g-difference calculus and its diverse applications is the work of Gasper and Rahman [24], which
provides a comprehensive exposition on the subject. Central to the study of analytic functions within
this framework is the g-difference operator d , which plays a crucial role in function theory. Notable
advancements in this area include the work of Seoudy and Aouf [31], who extended g-calculus to func-
tions within the unit disc, further enriching GFT. For further exploration, numerous classical and
contemporary studies provide valuable insights, including [1, 3, 6-13, 17, 18, 25, 28, 35].

Recently, Alsoboh and Oros [7] investigated a particular class of bi-univalent functions connected to
the leaf-like domain associated with g-calculus. The study concentrated on the definition that follows:

Definition 1.1: A function f € S is considered a member of the class X _(1,RX(z;q)) if it has the form (1)
and satisfies the following subordinations:

-9 1200, f2) < xz9), eD), ©)
<
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where X(0;9)=1, A>1, and

T P L i/l + (—(1 t9)z j , (7)
2+(1-9)z 2+(1-9q)z
where
f@-1@D) i, .o
z—qz
0,f(2)=1f"(2), ifq—1, z#0,
1(0) if z=0

Recent works by Amourah et al. [14] established the starlike class S*(q;X(z;q)), which pertains to
the leaf-like domain within U. This class is defined as follows:

Definition 1.2: A function f € S is considered a member of the class S*(q;R(z;q)) if it has the form (1)
and satisfies the following subordinations:

2d,f(2)
w(z)
where X(z;q) of the form (7).

<R(zq9), (zeD), )

Inspired by the articles of Soboh and Oros [7] and Amourah et al. [14], we apply the discussed ideas
and make use of the subordinating idea g-calculus. We thereby derive a bi-convex class connected
with the leaf-like domain inside the open unit disc U.

Definition 1.3: A function f € S is considered a member of the class C(q;X(z; q)) if it has the form (1)
and satisfies the following subordinations:

20:f(2)
=<
d,f(2)
where X(z;q) of the form (7).

1 R(z;q), (zel), 9

Remark 1.4: The unit disk U undergoes a transformation into a region with a leaf-like shape using the
analytic and univalent function X(z;q). This function exhibits symmetry with respect to the real axis
and fulfills the conditions ®(0; ) =9 X(0; q) =1.

(a) The image of 8(U;q) with ¢ - 1" (b) The image of X(U;0.89)
Figure 2: Continues.
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(e) The image of X(U;0.1) (f) The image of X(U) with ¢ — 0"
Figure 2: The figure shows the leaf-shaped region X(U; q).

The primary objective of this work is to investigate the properties of bi-univalent functions asso-
ciated with the leaf-like domain in U. This section, along with supporting examples, provides a clear
definition of the class under consideration. In Section 3, we derive coefficient estimates and analyze
the Fekete-Szego6 functional for the newly introduced class. Furthermore, leveraging the theorems
established in the preceding sections, we present corollaries that align with the specific scenarios
under discussion.

2. The Bi-Convex Class %, (X(z;q))

In this section, we employ the g-difference operator and the subordination principle between analytic
functions, which were previously mentioned, to present a rigorous mathematical characterization of
the newly introduced class 2 (N(z;q)) of bi-univalent functions affiliated with a leaf-like domain.

Definition 2.1: A function f of the type (1) belongs to the class X, (N(z;q)) if it satisfies the specified
subordination conditions:
20 f(2)

@(Z, q)=1+m

<RX(z; q), (ze ), (10)

and
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¢0:8(5)
d,8(s)

with X(z;q) of the form (7) and g =f".

2 q) =1+ <R(5;q9) (g€ ), (11)

Remark 2.2: We wish to underscore that the class X, (N(z; q)) is non-empty. To elaborate, let us exam-
ine the functions defined by:

z
‘(z)=——, |9 0.55. 12
f@=—o 10 (12)
It is evident that f. € S and, furthermore, f. € X together with its inverse:
1 G
i =—2— |¢¥0.55, 1
£-() 1+ﬁgll (13)

via means of the notations defined in equations (10) and (11), we may determine, via a basic computa-
tion, that:

O (@ia) =41, 191055
— <

7Y (14)

2(f7(6)q) = +1, |2#1<0.55.

1+q* ¢
Also, for all ze U, @(—0z;q) = y(¥z;q), which implies that @(U;q) = y(U;q).

We utilize GeoGebra Classic 6 to generate visual representations of the boundary denoted as dU,
employing the functions X and ¥, as presented in Table 3. This approach is particularly applicable in
situations where the conditions | #|< 0.55 and g € (0,1) are satisfied. It is essential to acknowledge that
X is a univalent function in U. Consequently, the relationships @(z;q) < X(z;q) and y(z; q) < X(z; q)
are valid. These relationships are substantiated by the following facts: @(0; q¢) = (0; q) = ®(0; @) =1,
&(U; q) c R(U; q), and y(U; q) < R(U; q). For further clarification, please refer to Figure 3.

Example 2.3: if ¢ — 1, then X (X(z;q)) is reduced to X, (2 +31+ 23) defined by

(a) ¢ »1 and ¢#=0.49. (b) g »1 and 9=0.41.

Figure 2: Continues.
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SN AT
< <)

-

(¢) g —1 and ¢#=-0.55. (d) ¢ =0.86 and #=0.49.
11 '
/_\ f_\
NS oo 1 e AN-05 0 o5 1 15
51
1

(e) ¢ =0.86 and ©=0.3. (f) ¢ =0.58 and ¢#=0.49.
AN05 0 05 1 A1 AN05 0 05 1 1.
N N5 |

(g) ¢ =0.36 and #=-0.55. (h) ¢ =0.36 and ¢#=0.51.

Figure 3: The image of X(e”;q) (black color) and @(e”;q) (red color) with several values of
q, ¥ and 6¢€ [0, 2x).

{fe Z:Zf}izg)+1<z+\3/1+23, (ze U)}, (15)

and

{er:%j_;(g)+l-<g+§/l+g3, (geU)}. (16)
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3. The bounds of the coefficients and the Fekete-Szeg6 functional within the class 2. (N(z; q))
Theorem 3.1: Let f € X of the form (1) be included in the class X, (N(z; q)). Then

1+q
J8121, [[31,0 + @) -4[2], ]

ki

and

1+ 1+q)*
g, 12, A¥a)
421,131, 16([21,)
proof:If fe X (N(z; q)), then, as per Definition 2.1, the existence of certain analytic functions s, and s,

may be established. These functions fulfil the requirements s, (0) = »,(0) =0, and | »,(2) | <1, | »,(g) | <1
for every z, ce U.

6,(2) =1+L1(Z)=1+€12+€222 +---, (ze V),
1-2,(2)
and
1+
5,9 =) 14t g v e D),
1_%2(g)
then J,, 6, € P. From the above relations, we get
0(2)-1
%(2): ! ’ (ZEU)9
' 0,(2)+1
and
5,(6)-1
7,(g)=-2"—, (cel).
T80 +1

From (10) and (11) it follows that

R(x¢(2); @) = 1+9)(6)-1) +§/1+[ a+a)(4)-1) ]3
! 1+36,(2) +q(1-6,(2)) 1+36,(2) +q(1-6,(2)) a17)
:1+1Zq€1w+1zq(€2_(S;q)ﬁjzz+__., (ze V),
and
RCaa) =13 ;15;;1)) E:Sczz((gl)—_ ;2)@)) ' i/l ' [1 + ;15;;1)) Efl((gl)—_ ;2)(9‘)) ] (18)
=1+1Zq]1g+1:1q(32—(3;q)]fjg2+---, (ce ).
Also,

L, 2@ :1+1+q£12+1+q 62_(3—q)@ 22 4o, (19)
9,f(2) 4 4 4
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and

1+

D,8() | 1+q +1+q(]2 3-9) zng, (20)

d,8(¢) 4 7 4 4

By comparing the relevant coefficients in equation (19) and equation (20), we can deduce the
following.

(2],a, :HTqél, (21)

12,0, =4, 22)

[21,[81, a, - [2a? = 12"(@ 8oy j @3)
and

(21, (2(3], ~[2],)a; —[2],[3],a, = 1{’7‘1(] - (?%q)%af j (24)

It follows from (21) and (22) that
¢, ==y and %=y, (25)
and
2
. _32(021,)

1 2 1 2
2((2], )’ a2 = Ig) (€f+]f)a§:ﬁ(ﬁ+f) & ff =
q

Adding (23) and (24), with doing some calculations, we get

2121, (131, -[2], )< = 1?[@ 4+ 8290 4q)(f?+af)]

Substituting the value of (ff + 7 ) from (26), we obtain

2[2], [[31, —(1 M) jmq}as LA ST

(1+q)
Moreover,
9 1+q
a, = - 0y +2,).
16[2] [[3] [14+B=9%) g } 27
o (1+q) !

Applying (4) for the coefficients ¢, and j,, we obtain
1+q
812, [18,a+ 9y - 4121, ]
By subtracting (24) from (23), and using /% = 7, we get

2(21,18), (a, - at) =22 (1, - ). @8)
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Then, in view of (26), the (28) becomes
2
_1ta ) M(gu :)

1 1)

I )T
Co8RLBL T Y 32([2),)
Thus applying (4), we conclude that

o< 1te , (A+a°
LA, 16(121,)

(]

Theorem 3.2: For any u € R, consider f defined as in equation (1), which belongs to the class X, (N(z; q)).
Then,

M [1-pul<21- ﬂ
4[2],[3],” [3],+q)|
[‘OL3 - ,uazz‘ <%
(1+q) ~ _ 42,
1], V()] 11-ul>2[t Blaras|
where
_ (@-mA+9)
Y= o810+ q) 4121, ]
proof: If f e K(X(z; q)) is expressed in the manner (1), then from (27) and (28), we obtain
) A-p(1+q) 1
a, —Ha, = ( ) ﬁ@z_k)

q q

- €2 2
1672, [, + q)—aizl, ] 2T

_(1+9)|( 1 1
= 521, y/o(ﬂ)+[3]q Ly, +| V() B Ja

where
1-w(A+9q)
() = .
2[[3],a+q)-4[2], |
Then, we conclude that
(1 + q) 1
—_— V()| € —,
4(21,[3], Ty
‘aS - ,ua;"‘ <
(1 + q) 1
y( ) ) y( ) 22—
iz, W) Yz
This finishes the proof of Theorem 3.2. l

Theorems 3.1 and 3.2 yield the following corollary, which is typically associated with Example 2.3.



Alsoboh A et al., Results in Nonlinear Anal. 8 (2025), 210-221 220

Corollary 3.3: For any i € R, consider f defined as in equation (1), which belongs to the class X, (N(z; q)).
Then, we can state the following

Ly I]-_/Lllgg;

1 7 12 3
<—, <—, and —ua;| <

2 242 o155 an Ja, — ] ) 0

—|1—,u, [1—ul=>=.

8 3

4. Conclusion

This paper investigates coefficient issues pertaining to a newly established subclass of bi-univalent
functions within the domain U, as specified in Definition 2.1. This subclass, represented by K(X(z; q)),
has been extensively analysed. We have established bounds for the second and third Taylor-Maclaurin
coefficients, |a,| and |a,|, for functions inside this class. Furthermore, we have supplied estimations
for the Fekete-Szego6 functional, therefore augmenting our comprehension of the geometric and ana-
lytic characteristics of these functions. These findings establish a foundation for additional research
into coefficient inequalities and associated extremal issues within the theory of bi-univalent functions.

In future studies, one could investigate the maximum bounds of the Zaleman conjecture and ana-
lyze Hankel determinants for the classes of bi-convex and bi-close-to-convex functions. These direc-
tions present promising opportunities for novel discoveries and deeper exploration in the field.
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