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Abstract
In the current research, the linear fuzzy system of the Volterra-Fredholm integral equations (FSV-
FIEs) is solved using the homotopy perturbation method (HPM). The Banach contraction fixed point 
is used to demonstrate the convergence of the solution under the established approximate scheme. 
The symmetric fuzzification solution is obtained by using convex symmetrical triangular fuzzy num-
bers.To verify the accuracy and efficiency of this method to handling FSVFIEs, the approximate and 
exact solutions are compared. Results from numerically solving examples of FSVFIEs are used to test 
the effectiveness of the suggested approach. These results show that the suggested strategy is highly 
effective and that the suggested method is easy to use. 
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1. Introduction

The fields of fuzzy integral equations, which have garnered more attention, especially in connection 
with fuzzy control, have advanced quickly [1]. Volterra-Fredholm integral equations in the mathemat-
ical modeling of the spatiotemporal evolution of an epidemic, The sources include different physical 
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and biological models as well as parabolic boundary value problems [2, 3]. Additionally, analytical 
solutions to these problems can be discovered in earlier studies. Simultaneously, the utilization of 
numerical techniques is crucial in resolving these equations [6]. Integral equation systems are crucial 
to science and engineering [7].

Many scientists, engineers, and researchers have studied and successfully used the homotopy per-
turbation method (HPM) in recent years to solve differential and integral equations. Ji-Huan He 
developed and improved the HPM, which was first suggested in 1998 [8, 9]. A fundamental idea of 
topology, the homotopy method, and the classical perturbation approach are combined to form the 
HPM. A suitable method for obtaining an approximation or analytical solutions for many problems 
appearing in different scientific domains would be made possible by this coupling [10, 11]. One of the 
many benefits of the HPM is that it can yield near-perfect solutions with few iterations, and in many 
situations The homotopy analysis method’s (HAM) increased applicability is due to its dependability 
and the fact that it requires less computational effort [12], the solution series converges quickly. A few 
years ago. Numerous scientists’ papers have included applications of the HPM theory, demonstrating 
the approach’s growth into a potent mathematical instrument [13]. Scientists and engineers have 
applied the HPM to nonlinear problems because it can be used to continuously deform an easy-to-solve 
simple problem into a challenging problem. This is particularly true for integral equations, where the 
method can be used to transform a challenging problem into an easy-to-solve simple problem [7, 14].

Through behavioral science, the field of Banach fixed point theory in functional analysis emerged 
as a crucial tool in non-linear sciences and engineering during the past few decades [15].

Fuzzy set theory is studied in the field of fuzzy mathematics. To demonstrate knowledge and anal-
ysis with nonstatistical uncertainty, Zadeh proposed the fuzzy set in 1965 [16]. The application of 
fuzzy or interval formulations in a variety of fields, such as artificial intelligence, topology, fractional 
calculus, fixed-point theory, integral inequalities, bifurcation, and consumer electronics [17]. Recently 
contains a review of nonlinear analysis techniques that have been developed recently. Many authors 
have utilized the HPM for various purposes [6]. The study of fuzzy IEs has become more and more 
important. In this work, we concentrate on first-order fuzzy Volterra integral equations given a fuzzy 
initial condition [18].

In recent years, fuzzy set theory has undergone numerous advancements and generalizations. 
Yusufoglu [13] provides a straightforward and efficient approach to solve these equations, which has 
been refined and enhanced by scientists and engineers. The authors give a strategy for resolving these 
equations and go over the convergence of the generated series in the HPM as well as convergence 
analysis for the linear mixed Volterra-Fredholm integral equations [4, 5, 6]. In order to obtain approx-
imate solutions for fuzzy Volterra integral equations of linear and nonlinear with a separable kernel, 
the HAM is investigated, this method offers a dependable means of guaranteeing the convergence of 
the approximation series [19].

The main goal of this research is to study the convergence of the HPM using the Banach contrac-
tion fixed point theorem, and the sufficient conditions for convergence were examined. Additionally 
includes developing a more effective and efficient approach for solving the fuzzy system of Volterra-
Fredholm Integral equations (FSVFIEs) using the HPM. Because convex symmetrical triangular 
fuzzy numbers are used, the fuzzy solution’s lower and upper representations are symmetrical. The 
efficiency of the approach is demonstrated with numerical examples.

2. Preliminary

In this section, we will go over some basic concepts related to fuzzy number:
Let X  be a nonempty set. The membership function u X: 0,1]→ [  defines a fuzzy set u  in X . 

Consequently, for each x in X , u x( ) is understood to be the degree of membership of element x  in the 
fuzzy set u . Fuzzy sets with u  on   are called convex if u x y min u x u y� �� �� � � � � � �� �(1 ) ,  for each 
x y, ∈  and � �[0,1]. Upper semicontinuous sets are closed for every λ  ∈[0,1], and normal sets are 
those where there are x u x∈ : ( ) =1. The fuzzy set u  is support if { , ( ) > 0}x u x∈  [18, 20].
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A fuzzy subset of the real line with a normal, convex, upper semicontinuous membership func-
tion of bounded support is called a fuzzy number u . Then, for each � �[0,1], it is straightforward to 
prove that u  is a fuzzy number if and only if u�� ��

� is compact convex subset of  . In other words, if u  

is a fuzzy number, then u u u�� �� � � � ��� ��
�

� �= ,  where, for each � = 0,1�� �� , u x x u�
�� � � �� ��� �= :min  and 

u x x u�
�� � � �� ��� �= :max . The parametric form or � � cut  representation of a fuzzy number u  is repre-

sented by the symbol u�� ��
� . We shall designate the set of fuzzy numbers on   by   [18].

Theorem 1  Assume that u : 0,1 ,�� �� �  satisfies the following requirements: u u1 1 ,� � � � �  u  is a bounded 
decreasing function, and u  is a bounded increasing function; u  and u  are left-hand continuous func-
tions at α = k for every k  that falls inside (0,1]; u  and u  are right-hand continuous functions at α = 0  
defined by

u x u x u� � � � � � � �� �= : 1 1 ,sup �

is a fuzzy number with parameterization given by u u� �� � � ��� ��, . 
For the proof see [20].

Theorem 2  The fuzzy system of integral equation of the second kind which has the form:





u x f x F t u t dtds nn n

x

a

b
n� � � � � � � �� � �� �1 0

, = , , , , 0,� � � � (1)

has a unique solution. 

Proof. We defined an operator T C a b C a b: [ , ] [ , ],→  where C a b[ , ] is the set of all continuous function 
on [ , ]a b , 

Tu x u x F t u t dtdsn
x

a

b
n  , = , , , ,0 0

� � � �� � � � � � �� �� �
x x t

t a b
=

,��� ��

� �sup  and X , .� � is a Banach space, where F t u tn, , �� �� � is nonlinear function. We will 

prove that T  has a unique solution, let xn� � be a sequence such that X TXn n= 1− , n ≥1, converges to 
the unique fixed point x∗  of T . If T  is the contraction then T  has a unique fixed point x∗ .Set Tn  is the 
contraction for some sufficiently large n ≥1. Now, if T  has fixed point then u Tu=  , also we assume 
that F t u tn, , �� �� �  be continuous function defined on the domain D ⊂ 2, and satisfy the Lipchitz con-
dition with respect to u D∈ .  Let u u C a b1 2, [ , ]∈

Tu x Tu x F t u t dtds

F t u t

x

a

b

x

a

b

  



1 2 0 1

0 2

, , = , ,

, ,

� � �� � � � � � �� �

�

� �

� � ��

� � �

�

� �� �

� � � � � �

�

� �
� �

��� ��

dtds

u t u t dtds
x

a

b

x

a

b

t a b

0 1 2

0 ,

, , 

supp  

 

 

u t u t dtds

u u dtds

b a u u x

x

a

b

1 2

0 1 2

1 2

, ,

=

� �

�

�

� � � � �

� �

�� � �

� �
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T u x T u x T Tu x T Tu x

TF t
x

a

b

2
1

2
2 1 2

0

, , = , ,

= ,

   � � � �� � � � � � �� � � � �� �

� � 





u t dtds

TF t u t dtds

Tu t

x

a

b

x

a

b

1

0 2

0 1

,

, ,

,

�

�

� �

� �� �

� � �� �

� � � �

� �

� � TTu t dtds

b a u u tdtds

b a u

x

a

b

x

a

b



 



2

0 1 2

2
0 1

,�

� �

�

� �

� �� � �

� �� � �

� �
� � 

 

u tdtds

b a u u x

2

2 2
1 2

2
=

2
� �� � �

and

T u x T u x b a u u x3
1

3
2

3 3
1 2

3
, , =

3!
,   � � �� � � � � �� � �

and so on, by integration n times we get

T u x T u x b a u u x
n

n n n n
n

   1 2 1 2, , =
!

.� � �� � � � � �� � �

So that,

T u T u T u x T u x

b a
n

n n

x

n n

n n

   



1 2
0,1

1 2= , , ,

!

� � � � � �

�
�� �

��� ��

sup � �

�
uu u1 2 .� 

If n sufficiently large, then 0 <
!

1,
� n nb a

n
�� �

�  this means that Tn  is contraction for n large, which 

implise that T  has a unique fixed point by generalized Banach contraction fixed point theorem. The 
unique fixed point has unique solution, then the unique solution converges to the unique fixed point. 
which complete the proof.  

Theorem 3 The fuzzy system of the integral equation that defined in Eq. (1) is converges iff

u
u
n

n

� �1 1.

Proof. From Theorem 2 and by integration, we have

T u T u
b a
n

u un n
n n

� �
� �

�
�� �
�� �

�1
1

1
2

1 1

1 2=
1 !

,   

�

we will prove that u un n� �1 . Since

T u T u T u T un n n n� �� � �1
1

1
2 1 2 ,   
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therefore,

� �n n n nb a
n

u u
b a
n

u u
� �

�� �
�� �

� �
�� �

�
1 1

1 2 1 21 ! !
,   

by solving this inequality, we have

0 <
1

1,
� b a
n
�� �
�

�

since T  has fixed point such that u Tu= , therefore u un n� �1 , this means that 
u
u
n

n

� �1 1, which com-

plete the proof.

3. HPM applied to FSVFIEs

In this work will consider FSVFIEs of the second kind, which have the following form:





u x f x K s t u t dtds ii i
j

ij
x

a

b
ij j, = , , , , =1,2

=1

2

0
� � � �� � � � � � � � �� � � (2)

where f x C a bi , ,�� �� �� ��  and K s tij ,� � are continuous on

D s t a t b a s x b= , : ,� � � � � � �� �and

while u xi ,�� � are unknown continuous functions to be found.
Recall Eq. (2) and define the operator L  as follows

L u x u x f x K s t u ti i i
j

ij
x

ij j 





� � �� �� � � � � � � � � �� � �, = , , ,
=1

2

0
� � � �

�
,, = 0,�� �dtds (3)

give the solutions  u x u xi i
� � � � �, = , .� �  A HPM convex homotopy is defined H u pi

�� � � �� �� �, : 0,1  by

H u p p F u pL ui i i  

� � �� � �� � � � � � �, = 1 = 0, (4)

where F u u x f xi i i 



� �� � � � �= , ( , ),� �  functions as an operator, p� �� ��0,1  is the homotopy parameter, and 
u xi,0 ( , )α  defines the initial solutions of Eq. (2). From Eq. (4), we have

H u F u H u L ui i i i   

� � � �� � � � � � � �,0 = , ,1 = , (5)

where H u pi
�� �,  from the trivial problem is all that is H u pi

�� �,  changed when the imbedding param-

eter p  is changed from 0  to 1. H u F ui i 

� �� � � �,0 = = 0  to the original problem H u L ui i 

� �� � � �,1 = = 0 . In 

topology, it is called deformation while H ui
�� �,0  and H ui

�� �,1  are called homotopic. By using L ui
�� � 

and F ui
�� �  the homotopy operator of the equation under consideration will be obtained, as defined 

above:

H u p p F u p u x f x

K

i i i i

j
ij

x

  



� � �� � �� � � � � � � � � ��
�� � �

, = 1 , ,

=1

2

0

� �

�
� iij js t u t dtds, , .� � � �

�

�
��

�
 �

(6)
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So that

H u p u x f x

p K s t u t

i i i

j
ij

x
ij j

 





� �

�

� � � � � � �

� � � �� � �

, = , ,

, ,
=1

2

0

� �

�
�

��� �
�

�
��

�

�
��dtds = 0.

(7)

The approach allows power series to be used

 u x p u xi
n

n
i n

�
�

�� � � ��, = , ,
=0

,� � (8)

If Eq. (8) has a convergence radius of one or more, and the series
n i nu x

=0 , ,� �� � � �  converges absolutely, then the approximate solutions of Eq. (2) are

  u x p u x u xi
p n

n
i n

n
i n

�

�

�
�

�
�� � � � � �� �, = , = , .

1 =0
,

=0
,� � �lim (9)

Substituting Eq. (8) in Eq. (7) gives

n

n
i n i

j
ij

x
ij

n

np u x f x p K s t p
=0

,
=1

2

0 =0
, = , ,

�
�

�

� � � � �� � � � � � �



� � �
�

uu t dtdsj n, , ,� � �
�

�
��

�

�
���

and obtaining the recurrence relations that ultimately lead to the approximate solutions by equating 
the same power terms of the embedding parameter p :

p u x f x

p u x K s

i i

n
i n

j
ij

x
ij

0
,0

, 1
=1

2

0

: , = , ,

: , =







�

�
�

� � � �

� � � � �

� �

� �
�

,, , , = 1,2,...,t u t dtds nj n� � � ��
 �

(10)

Assuming that the series (8) is convergent, the aforementioned relations are obtained.

4. Application Problems

The HPM for solving FSVFIEs is demonstrated in the next two problems in this section. The max-
imum errors are defined as follows to demonstrate the exceptional accuracy of the solution results 
when compared to the exact solution.

MAE u x u x

MAE u x u x

L i Exact i n

U i Exact i n

= , ,

= , ,

, ,

, ,

� �

� �

� � � � �
� � � � �

�

�

,, 1,n �

where

ll u x u xi Exact i Exact, ,, , , :� �� � � �� � Lower and Upper Exact solution,,

, , , :, ,u x u xi n i n� �� � � �� � Lower and Upper-Approximate solutioon

Thirty-digit precision was achieved in the computations related to the problems using a Maple 22 
package.
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Problem 1. We consider the FSVFIEs (2) with

� �

� �

11 12 11 12

21 22 21

= 1
2

, = 1
4

, , = , , = ,

= 1
3

, = 1
4

, ,

K s t s t K s t st

K s

� � � � �

tt st K s t s� � � � �= 1, , = ,22

(11)

and a = 0, b =1, where f x f x f xi i i, = , , ,� � �� � � � � ��
�

�
�  are chosen such that the exact solutions will be 

u x e ex x
1 , = 2 1 , 2� � �� � �� � �� ��� ��  and u x x x2

2 2, = , 3 2 .� � �� � �� ��� ��
The HPM is then used recursively to calculate the lower iterations (L), as explained below:

p u x f x

p u x K s t

i i

n
i n

j
ij

x
ij

0
,0

, 1
=1

2

0 0

1

: , = , ,

: , = ,

� �

� �

� � � �

� � � �� � � � uu t dtds ni n, , , 0�� � �
(12)

and the upper iterations (U) are

p u x f x

p u x K s t

i i

n
i n

j
ij

x
ij

0
,0

, 1
=1

2

0 0

1

: , = , ,

: , = ,

� �

� �

� � � �

� � � �� � � � uu t dtds ni n, , , 0.�� � �
(13)

Through systemic solution (12) and (13), we obtain the iterations
� � … �u x u x u xi i i n,0 ,1 ,, , , , , ,� � �� � � � � �. Consequently, the series form approximations of the solutions are

  u x u x u xi i
n

i n, = , , .,0
=1

10

,� � �� � � � � � ��

At each point x li = 0.1 , l = 0,1, ,10  within the interval 0 < 1� � , show the maximum errors for 
the lower and upper between the exact solution and approximate solution using the HPM (m =10) in 
Table 1. However, we list the absolute errors (AE) when α =1  on the interval 0 1≤ ≤x , in addition to 
a comparison with the absolute errors of the fixed point method’s numerical treatment [21] in Table 2.

Table 1: The maximum errors for Problem 1. 
0 < 1� �   u x1 ,�� �   u x2 ,�� �  
xi   MAEL   MAEU   MAEL   MAEU  
0.0   0.0   0.0   0.0   0.0  
0.1   1.665 11E −   9.033 12E −   1.807 11E −   9.807 12E −  
0.2   3.171 11E −   1.720 11E −   3.553 11E −   1.927 11E −  
0.3   4.519 11E −   2.451 11E −   5.236 11E −   2.839 11E −  
0.4   5.707 11E −   3.096 11E −   6.856 11E −   3.718 11E −  
0.5   6.737 11E −   3.655 11E −   8.414 11E −   4.562 11E −  
0.6   7.607 11E −   4.128 11E −   9.909 11E −   5.372 11E −  
0.7   8.319 11E −   4.515 11E −   1.134 10E −   6.149 11E −  
0.8   8.872 11E −   4.816 11E −   1.271 10E −   6.890 11E −  
0.9   9.265 11E −   5.030 11E −   1.401 10E −   7.598 11E −  
1.0   9.500 11E −   5.159 11E −   1.526 10E −   8.272 11E −  
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Figures 1–6 below display exact solutions u xi Exact, ,�� �� � and the fuzzy approximate solutions by 
the HPM u xi,10 ,�� �� �  of the system (11) are in the form of fuzzy numbers for any � �� ��0,1  at x = 0.5.

Problem 2. We consider the FSVFIEs (2) with

� �

� �

11 12 11 12

21 22 21

= 0, = 1
4

, , = 0, , = 1,

= 0, = 1
4

, ,

K s t K s t st

K s t

� � � � �

� �� � � �= 0, , = ,22K s t s t
(14)

Table 2: Comparison the absolute errors for Problem 1.
α =1   u x1 ,�� �  u x2 ,�� � 
xi   AE  [21]  AE  [21] 
0.0   0.0   0.0   0.0   0.0  
0.1   9.0336 12E −   9.0336 12E −   9.807 12E −   9.808 12E −  
0.2   1.7206 11E −   1.7206 11E −   1.927 11E −   1.927 11E −  
0.3   2.4517 11E −   2.4518 11E −   2.839 11E −   2.840 11E −  
0.4   3.0968 11E −   3.0969 11E −   3.718 11E −   3.718 11E −  
0.5   3.6558 11E −   3.6558 11E −   4.562 11E −   4.563 11E −  
0.6   4.1286 11E −   4.1287 11E −   5.372 11E −   5.373 11E −  
0.7   4.5154 11E −   4.5155 11E −   6.149 11E −   6.149 11E −  
0.8   4.8161 11E −   4.8161 11E −   6.890 11E −   6.891 11E −  
0.9   5.0306 11E −   5.0306 11E −   7.598 11E −   7.599 11E −  
1.0   5.1591 11E −   5.1592 11E −   8.272 11E −   8.273 11E −  

Figure 1: Graph of u xExact1 ,, �� � and u x1 10 ,, �� �



Younis MT and Al-Hayani W, Results in Nonlinear Anal. 8 (2025), 207–221. 215

Figure 2: Graph of u xExact2 ,, �� � and u x2 10 ,, �� �

Figure 3: Graph of u xExact1 ,, �� � and u xExact1 ,, �� �

Figure 4: Graph of u x1 10 ,, �� �  and u x1 10 ,, �� �
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Figure 5: Graph of u xExact2 ,, �� �  and u xExact2 ,, �� �

Figure 6: Graph of u x2 10 ,, �� �  and u x2 10 ,, �� �

and a = 0, b =
2

,π  where f x f x f xi i i, = , , ,� � �� � � � � ��
�

�
�  are chosen such that the exact solutions will be 

u x x x1 , = , 2� � �� � � � �� � � ��� ��cos cos  and u x x x2
2 3 2, =

1
2

, 3 2 .�
�

�� �
�� � � � �� � � �

�

�
�
�

�

�
�
�

sin sin

The lower (L) and upper (U) iterations are given in Eqs. (12) and (13) respectively. Solving the 
systems of lower and upper, we get the iterations � � … �u x u x u xi i i n,0 ,1 ,, , , , , ,� � �� � � � � �. Consequently, the 
series form approximations of the solutions are

  u x u x u xi i
n

i n, = , , .,0
=1

10

,� � �� � � � � � ��
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In Table 3 present the maximum errors for the lower and upper between the exact solution and 
approximate solution using the HPM m =10� �  at each point x li = 0.1 ,π  l = 0,1, ,5  within the interval 

0 < 1.� �  But, in Table 4 we list the absolute errors (AE) when α =1  and 0
2

,� �x �  and a comparison 

with the fixed point method’s numerical treatment’s absolute errors [21].
Figures 7–12 below display exact solutions u xi Exact, ,�� �� � and the fuzzy approximate solutions by 

the HPM u xi,10 � �� � of the system (14) are in the form of fuzzy numbers for any � �� ��0,1  at x =
4

.π

Table 3: The maximum errors for Problem 2.
0 < 1� �   u x1 ,�� �   u x2 ,�� �  
xi   MAEL   MAEU   MAEL   MAEU  
0.0   0.0   0.0   0.0   0.0  
0.1π   2.337 11E −   8.346 12E −   1.747 11E −   6.239 12E −  
0.2π   3.993 11E −   1.426 11E −   2.653 11E −   9.475 12E −  
0.3π   4.968 11E −   1.774 11E −   2.717 11E −   9.706 12E −  
0.4π   5.262 11E −   1.879 11E −   1.941 11E −   6.933 12E −  
0.5π   4.875 11E −   1.741 11E −   3.238 12E −   1.156 12E −  

Table 4: Comparison the absolute errors for Problem 2. 
α =1   u x1 ,�� �   u x2 ,�� �  
xi   AE  [21]  AE  [21] 
0.0   0.0   0.0   0.0   0.0  
0.1π   8.3464 12E −   1.52318 10E −   6.2396 12E −   8.2427 11E −  
0.2π   1.4260 11E −   2.55728 10E −   9.4750 12E −   1.3157 10E −  
0.3π   1.7742 11E −   3.10231 10E −   9.7064 12E −   1.4742 10E −  
0.4π   1.8793 11E −   3.15826 10E −   6.9335 12E −   1.3003 10E −  
0.5π   1.7410 11E −   2.72513 10E −   1.1566 12E −   7.9341 11E −  

Figure 7: Graph of u xExact1 ,, �� � and u x1 10 ,, �� �
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Figure 8: Graph of u xExact2 ,, �� � and u x2 10 ,, �� �

Figure 9: Graph of u xExact1 ,, �� � and u xExact1 ,, �� �

Figure 10: Graph of u x1 10 ,, �� �  and u x1 10 ,, �� �
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Figure 11: Graph of u xExact2 ,, �� � and u xExact2 ,, �� �

Figure 12: Graph of u x2 10 ,, �� �  and u x2 10 ,, �� �

5. Discussion

The main focus of this research is solving FSVFIEs of the second kind by using HPM, which also com-
pares the convergence with [22]. The author in [23] has been converted into a system by using para-
metric form. The convergence of the Volterra equation by using the variational iteration method using 
Hilbert space, which is completely different from HPM by using contraction fixed point Banach space.

6. Conclusions

In this research, two main objectives were addressed: first, the convergence of the HPM was investi-
gated using the Banach contraction fixed point theorem, and the sufficient conditions for convergence 
were examined. Secondly, the approximate solutions of the FSVFIEs are obtained through the use of 
the HPM. The provided examples illustrate the potential of the method.
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Furthermore, the convergence of the solutions was proven, and the findings from numerical exam-
ples signify the accuracy and efficiency in this study. To determine the ideal value of the conver-
gence-control parameter, the convergence of this method was qualitatively examined. The above 
examples demonstrate the method’s potential. Numerical results and graphs show that the linear 
fuzzy system of the Volterra- Fredholm integral equations are well approximated by the method. A 
comparative analysis is conducted between the exact solutions and the numerical outcomes derived 
from the absolute errors of the numerical application of the fixed point method with the HPM for 
α =1  as well as the numerical solution for the given FSVFIEs to achieve the least amount of compu-
tation. The error decreases when the number of iterations m increases and gives faster convergence. 
The FSVFIEs are also illustrated through numerical results and graphs. When compared to other 
approximation or numerical approaches, This semi-analytical method demonstrated the HPM supe-
rior performance.
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