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1. Introduction

 The fractional derivative [13, 15, 10] has attracted the interest of many researchers, each of whom 
has given the concept of the fractional derivative according to their opinion, for example:

1. Caputo’s definition [6]
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With 0 < 1� � .
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2. Riemann-Liouville definition [12]
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With 0 < 1� � .

3. Conformable derivative [13]

D t t t t�

�
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�
� � �( ) = 1 [ ( ) ( )].

0

1

�

�� �lim

With 0 < 1� � .
Conformable integral transforms are an important focus of this work, such as:
The conformable Fourier transform [2], 
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and in the general case [3] 
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The conformable Laplace transform [1] 

�

�

� �� �[ ( )]( ) = ( ) .
0

1t s e t t dt
st�� � �� (3)

and in the general case [4]. 

F
sG tt s e t F t dt� �� � �[ ( )]( ) = ( ) ( , ) .

0

( )�� �

� (4)

And the conformable Sumudo transforms [5]. 

n
n st

t s s t e t t dt� �

�

� �� �[ ( )]( ) = ( ) .
0

( 1) 1�� � � �� (5)

For more information on this field of research regarding fractional calculus and the conformable 
derivatives approach, the interested reader can also consult [7, 8, 9, 11, 14, 16, 17].

In this paper, we give the concept of the highest derivative, where α  is in the interval ( 1, ]n n−  
and n∈*. Then we introduce the concept of the Higher-Order Conformable Laplace transform and 
the Higher-Order Conformable Sumudu, similar to the concept of the Higher-Order conformable 
derivative.

2. Higher-order derivative

Consider n∈* and � � �( 1, ]n n  throughout the paper.

Definition 2.1  Given a function � : [0, )� � . Then the Higher-Order conformable derivative of τ  of 
order α  is defined by 
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�
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If lim t
t

n
� �0

( )��  exists, then we define  � �� �n
t

nt lim t( )(0) = ( )
0� � .

1. In case n =1, we obtain the derivative

�
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�

�
� � �

�
1

0

1
( ) = ( ) ( )t t t t

�

�� �
lim

defined by Khalil et al. [13].
2. In case n =α , we obtain, the classic derivative �

�� �( ) = ( )t t� .

As a consequence, we obtain the following result, similar to the one in the classical analysis.

Theorem 2.2 If a function � : [0, )� �  is Higher-Order conformable derivative at t0 > 0  for  
� � �( 1, ]n n , then τ  is continuous at t0 . 

Proof. Let t0  be an arbitrary point greater than zero. Since 
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Let k tn= 0
�� � , then k → 0 if � � 0 , so we have 
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From this, we have the continuity of τ  at t0 .

Theorem 2.3  Consider τ τ τ, ,1 2  be α
n -differential at t > 0. Then:  

1.   � � �� � � �n n na b t a t b t( )( ) = ( ) ( )1 2 1 2� � . 
2. T R� � �n( ) = 0, � . 
3.   � � �� � � � � �n n nt t t t t( )( ) = ( ) ( ) ( ) ( )1 2 2 1 1 2� . 
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5. For all f , which is differential, we have �
�� �n nt t t( ) = ( )� � . 

Proof. Let’s apply the definition 2.1
1.	
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3.	
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Example 2.4 Let n = 5  and α = 9
2

. Then for all t > 0
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Higher-Order Conformable Derivatives of certain functions

Theorem 2.5 Let n∈* and n n� �1 <� .  
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Proof. Using Theorem 2.3
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Theorem 2.6 Let � : [0, )� �  be a given α
n -differential. Then 

 � �� �n nt t t( ) = ( ).1�

Proof. By Theorem 2.3 
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Example 2.7 Let n = 5  and α = 9
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. then for all t� ��(0, )  
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and 

�
n t t�1 2

1
2( ) = 2

then 

 � �� �n nt t t( ) = ( ).1�

Remark 2.8 In general 

  � � � �� �� �n n nt t( ) ( ).

For � �,  be such that n n� �1 < ,� �  and τ  be a twice differential.

Example 2.9 Let n =1, = = 1
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Then 

� ���
n t t( ) = 2

and 

 � ��
n n t t( ) = 3

thus

  � � � �� �� �n n nt t( ) ( ).
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thus 
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Definition 2.12 Let � : [0, )�� �   and � � �( 1, ]n n . The higher-order conformable integral is defined 
by 

�
�� �n t nt s s ds t( ) = ( ) , [0, [

0�
� � ��

Example 2.13 For n = 7  and α = 13
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Lemma 2.14 Let � : [0, )� � . for all t > 0 
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Lemma 2.15 Let � : [0, )�� �   be a higher-order differential and � � �( 1, ]n n . Then 
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and 

I T� ��
n n t

t s ds t t( )( ) = (6 2) = 3 2
0

2� � �

then 

I T� �� � �n n t t( ) = ( ) (0).�

Theorem 2.17 (Higher Roll’s theorem)
For a > 0  and � : [ , ]a b �   be a given function that satisfies:  

1. τ  is continuous on [ , ]a b .
2. τ  is a higher differential for some � � �( 1, )n n .
3. τ τ( ) = ( )a b .
We have, there exists c a b∈ ( , ) such that ��

n c( ) = 0 .

Proof. Since τ  is continuous on [a, b] and τ τ( ) = ( )a b , c a b∈ ( , ) is a point of local extrema. Assume, for 
example, that c is a local minimum point. Thus, 
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However, both the first and second limits are non-positive. Therefore, 
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Theorem 2.18 (Higher Mean Value Theorem)
Let a > 0  and � : [ , ]a b �   be a given function that satisfies:  

1. τ  is continuous on [ , ]a b .
2. τ  is a higher differential for some � � �( 1, )n n .
Then, there exists c a b∈ ( , ) such that: 
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Higher Roll’s Theorem criteria are satisfied by the function g . Consequently, � �c a b( , ) such that: 
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Using the knowledge that �
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Therefore: 
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� � �

� �

� �

1 1 1 1

1 1

( )( ( )) [ ( )] ( ( ))
= ( ) ( ( ))

� � �

� �  (( ( )) .1�
�t n�

Example 2.20 Let n t t= 5, = 9
2
, ( ) = 3 1� � �  and �1

2( ) = 2 1t t t� � .
Then 

�
nh t t h t t t( ) = ( ) = 6 ( 1),� � (6)

�� �n t t t t t1 1( ) = '( ) = 2 ( 1),� (7)

�1
1
2( ) = 1

1
,t

t� �
�

� (8)

and

 � �� � �n nt t t( ( )) = (( 1) ) = 3( 1).1
2� � (9)

Thus, by (6), (7), (8) and (9) 

  � � �
�� � � �n n n nh t t t t( ) = ( ) ( ( )) ( ( )) .1 1 1� � �

3. Higher laplace transform and higher sumudu transform

This section introduces, with proofs, a set of fundamental properties and rules for the higher-order 
conformable Laplace and higher-order Sumudu transforms. We also prove the relationship between 
the two transformations needed to solve the corresponding higher-order conformable differential 
equations.

3.1 Higher Laplace transform

Definition 3.1 Let � : [0, )� �  be a given function and n n� �1 <� . The higher-order conformable 
Laplace transform of f  is defined by 

�
�
�

� �� � � �n
t n

n nt e t t dt( ( ))( ) = ( ) ,
0

1

1
�� �

� �

� � �� �
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Provided the integral exists.

Example 3.2  Let n = 8 and α = 15
2

. Then for λ > a , 

15
2

8 2( )( ) = 1 .e
a

a t �
� �

Theorem 3.3  Let � : [0, )� �  be a given function and n n� �1 <� . Then 

 �
�� � � � � �n nt n u( ( ))( ) = [ ( 1) ] ( ), > 0.1 � �� �� �

Proof. Applying Definition 3.1 and letting u t
n

n
=

1

1�

�

� �

� �

�
�
�

� �� � �

� �

n
t n

n n

su

t e t t dt

e n

[ ( )]( ) = ( )

= [ ( 1)

0

1

1

0

�� �
� �

� � �

� �

�
� � � uu du

n u

n

n

�

�� � �

� �

� � � �� �
1

1

]

= [ ( 1) ] ( ).

Theorem 3.4 Let � : [0, )� �  be a continuously higher-order differential function and n n� �1 <� .  
Then 

 � � �� � � � � � �n n nt t[ ( )]( ) = [ ( )]( ) (0), > 0. �

Proof. Applying Definition 3.1 and Theorem 2.3 

� �

�
�

�

�
�

� �
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t n

n

t

f t e t dt

e

( ( ))( ) = ( )

= (0)

0

1

1

0


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� �

� �

�� �

�

�

�

� �
�� �

� � �

�

n

n n

n

t t dt

t

1

1 ( )

= [ ( )]( ) (0).

� �

�

�

� � � �

Theorem 3.5  Assume that � : [0, )� �  is a continuously higher-order differential function and 
n n� �1 <� . Then 

 � � � �� � � � � �� � �n n n nt t( ( ))( ) = ( ( ))( ) (0) (0), > 0.2 2 � �

Where 2 ( ) = ( )  � � �� �n n nt t .

Proof. Applying Theorem 3.4 

 


� � � � �

�

� � � � � �

� � � �

n n n n n

n

t t
t

( ( ))( ) = ( ( ))( ) (0)
= [ ( ( ))( )

2  �

��� �

� � � �� �
�

� �

(0)] (0)
= ( ( ))( ) (0) (0).2

�

� �





n

n nt

Theorem 3.6  Let f  be a real function taking its values in [0, ]t  and 

n n

t tn n n

� �1 <

[ ( )]( ) = 1 ( )( ), > 0.

�

� �
�

� � �� � � 
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Proof. We have 

 � � � �� � � �n n n nt t( ( ))( ) = ( ( ))( )T I

and according to the theorem 3.4 

  � � � � � � � �� � � � � � � �n n n n n n n nt t t( ( ))( ) = ( ( ))( ) (0) = ( ( ))(T I I I I� ��)

so 

 � � �� �
�

� � �n n nt t( ( ))( ) = 1 ( )( ), > 0. �

Theorem 3.7  Let a∈  and n n� �1 < ,� � .  

1. �
�

� �
�

�n at
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a
� �

� �
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�
�
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�
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�
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n
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a
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�

�
�

�
�n

n
a t

n
a
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] ( ) = , >| |.
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5. �
�

�
�
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�
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n

a t
n a

acosh[
1

] ( ) = , >| |.
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2 2
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� �
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�� �

 

Proof. Using definition 3.1
	(1) 
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Then 

�
�

�
�

�
n
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n
a
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1

] ( ) = .
1

2 2

� �

� �

�

�
��

�

�
�� �
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Theorem 3.8  Let � �1 2, : [0, )� �   be two given functions and n n� �1 <� . 

  � � �� � � � � � �n n nt t t[( * )( )]( ) = [ ( )]( ) [ ( )]( )1 2 1 2

where 

( * )( ) = ( ) .1 2 0 1 2
1 1 1� � � � � � � �t s t s s ds

t n n n n� � � � � � � ��� �
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Proof. By Definition 3.1 

�
�
�

� �� � � � �n
t n

n nt e t t dt[( * )( )]( ) = ( * )( )

=

1 2 0

1

1
1 2
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�� �
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� ee t s t s s ds
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1
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�t dt dsn� .

By changing the variable v t sn n n= 1 1 1� � �� � � � � �� . 
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v v e dv

t
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n n  22( )]( ).t �

3.2 Higher Sumudu transform

Definition 3.9 Over the following set of functions: 

A x M x Me x
x n

n j n
�

�

� � �� � � � �( ) = { ( ) : , , > 0,| ( )|< ,1 2

| 1|
( 1) 1�

� �

� � � �if ��

� � ��( 1) [0, ), =1,2}.j j

The Higher conformable Sumudu transform of f  can be generalized by: 

�

�

� �� �n u
t n

n nt u
u

e t t dt u( ( ))( ) = 1 ( ) ,
0

1 1

1
�� �

� �

� � �� �

The next theorem gives a relationship between the higher-order conformable Sumudu transform 
and the higher-order conformable Laplace transform.

Theorem 3.10  Let � : [0, )� �  be a given function and 
n n� �1 <� .Then 

S L� �� �n nt u
u

t
u

( ( ))( ) = 1 ( ( ))(1 ).

Proof. Applying Definition 3.9, we get: 

S�
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t u
u

e t t dt u

v e

( ( ))( ) = 1 ( ) ,
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�
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t t dt u v
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u
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1 ( ) , ( = 1 )

= ( ( ))( )

= 1 ( ( ))(



L

L
11 ).
u
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which completes the proof of the Theorem 3.10. 

Theorem 3.11 Let � : [0, )� �  be a given function and n n� �1 <� .Then 

 �
�� � �n nt u n s u u( ( ))( ) = [ ( 1) ] ( ), > 01 � �� �� �

Proof. Using Theorems 3.10 and Theorem 3.3, we get: 

S L
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� �
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� �

� �
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t u
u
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u
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n s
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( ( ))( ) = 1 ( ( ))(1 )

= 1 [ ( 1) ] (1 )

= [

1 � �� �� �

(( 1) ] ( ).1 �� � �� �� � n s un

Theorem 3.12 Let � : [0, )� �  be a given continuously higher-order differential function and 
n n� �1 <� . Then 




� �
��
� �n n

n
t u t u

u
u[ ( )]( ) = [ ( )]( ) (0) , > 0. �

Proof. By Theorem 3.10 and Theorem 3.4 
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[ ( )]( ) = 1 ( ( ))(1 )
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1 [ ( )](1 ) (0)
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

�

�� �( )]( ) (0) .t u
u

�

Theorem 3.13 Let � : [0, )� �  be a given continuously higher-order differential function and 
n n� �1 <� . Then 

 � � � �� � � �n n n nt u
u

t u
u u

u( ( ))( ) = 1 ( ( ))( ) 1 (0) 1 (0), > 0.2
2 2 � �

Where 2 ( ) = ( )  � � �� �n n nt t .

Proof. By Theorem 3.10 and Theorem 3.5 

S L

L

� � � �

�

� �

�

n n n n

n

t u
u

t u

u u
t
u u

( ( ))( ) = 1 ( ( ))( )

= 1 [ 1 ( ( ))(1 ) 1

2 2

2

 

� �� �

� � �

�

� �
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t u

u u
S

Theorem 3.14  For a continuous function � : [0, )�� �  . 

 � � �� �n n nt u u t u u[ ( )]( ) = ( )( ), > 0.
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Proof. Using Theorems 3.10 and Theorem 3.6, we get: 

 
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
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�
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 
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Which completes the proof of Theorem 3.14.

Theorem 3.15 Let a∈  and n n� �1 < ,� � .  
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Proof. Using Theorem 3.10 and Theorem 3.7
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	(3) 
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Theorem 3.16 Let � �1 2, : [0, )� �   be two given functions and n n� �1 <� . 

  � � �� � � �n n nt u u t u t u[( * )( )]( ) = [ ( )]( ) [ ( )]( ).1 2 1 2

Proof. Using Theorem 3.8 and Theorem 3.10 
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4. Applications

Example 4.1 Let’s study the following differential equation: 

� �
� �

u t t u t t e t( ) 3 ( ) =
1
2

1
2 2

1
2 (10)

where u t(0) = 0, > 0 .
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So according to theorem 2.3, We replace the equation (10) with 

15
2

8 2( ) 3 ( ) =u t y t e t+

By utilizing the α
n -Laplace transform and Theorem 3.4, we have for λ >1 

� � �
n u t( ( )) = 3

4
1
3

1
4

1
1�

�
�

And by Theorem 3.7, we find 

u t e et t( ) = 3
4

1
4

.6 2� �

Example 4.2 We want to study the following higher-order harmonic oscillator equation: 
2 ( ) 9 ( ) = ( ), (0) = , (0) = � �� � � �n nt t f t a b� (11)

By applying the higher-order Laplace transform to this equation and using the fact that it is a 
linear operator 

  � � � �� � � � �n n n nt t f t2 ( ) ( ) 9 [ ( )]( ) = [ ( )]( ).� � �

By Theorem 3.5 

� � � �� � � � �� � � �
2 ( ( ))( ) (0) (0) 9 ( ( ))( ) = ( ( ))( )  n n n nt t f t� � �

then 

 � �� �
�

� � �
�n nt a b f t[ ( )]( ) =

3
1
3

1
3

[ ( )]( )2 2 2 2 2 2�
�

�
�

�

And using Theorem 3.8 and Theorem 3.7 

�
� �

� � �

( ) = [3
1

]
3

[3
1

] 1
3

[3
1 1

0

1
t a t

n
b t

n
sn n t

cos sin sin
� � � � �

� �
�

� �
� �

��
� � � � � � �

� �
�� �n

n n n n

n
f t s s ds

�
� � � �

1
] .1 1 1
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