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1 Introduction

Let S S S= { ,..., }1 m  be a system of contracting similarities in a complete metric space X . The unique 

compact non-empty set K  that satisfies equation K S K
i

m

i= ( )
=1


 is called  the attractor of the system 

S, or a self-similar set, defined by the system S  [8]. If the self-similar set K  is connected, we call it a 
self-similar continuum. By Hata’s Theorem [7], each self-similar continuum is locally connected.

A dendrite is a locally connected continuum K  that does not contain a simple closed curve [6]. 
Some authors call dendrites acyclic curves [7]. Thus, each acyclic self-similar continuum is a self-sim-
ilar dendrite. The present paper considers some properties of self-similar dendrites in d  and in the 
Hilbert space.

Since the inception of the theory of self-similar sets, self-similar dendrites have been addressed by 
many authors in their papers on the subject. In 1985 M. Hata [7], proved that the set of endpoints of a 
nontrivial self-similar dendrite has infinite cardinality. In 1995 J. Kigami [9] investigated the short-
est path metrics in postcritically finite self-similar dendrites and constructed regular Dirichlet forms 
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for such dendrites. In 1991, C. Bandt and K. Keller [3] proposed the intersection graph criterion for 
the dendrite property of finitely ramified self-similar continua (Proposition 9). The paper [5] contained 
the idea of the main tree of a PCF self-similar dendrite.

The open set condition (OSC) and the weak separation property (WSP) are essential in the theory 
of self-similar sets for analyzing their dimension and measure.

In 1992 Bandt and Graf [2] introduced the condition id∉ ( )S  which is equivalent to the positive-
ness of the Hausdorff measure H Ks( )  where s  is the similarity dimension of the system S .

In 1994 A. Schief [13] proved that the conditions SOSC, OSC and the positiveness of Hausdorff 
measure H Ks( )  are equivalent for self-similar sets in d . In 1996 [14] he extended his results to 
self-similar sets in complete metric spaces.

The weak separation property (WSP) was defined for self-similar sets by K.-S. Lau and S.-M. Ngai 
[12] and by M. Zerner[16]. If a self-similar set K  has WSP, the measure of K  in its dimension is pos-
itive. There are many geometric phenomena related to the fulfillment or violation of this property.

As was proved by C. Bandt and H. Rao in [4], any self-similar continuum in the plane that has a 
finite intersection property satisfies the open set condition, which implies the WSP.

In paper [1], it was proved that all self-similar dendrites in the plane have the Weak Separation 
Property.

We prove that if a self-similar dendrite in n  has the WSP, then the orders of its points are bounded 
(Theorem 3.1). Here, n is any positive integer.

There exist examples of self-similar dendrites on the plane that satisfy the Weak Separation 
Property (WSP) but do not satisfy the open set condition (OSC). In this case, some intersections of 
copies may have positive measures and are attractors of certain graph-directed systems of similarities.

In the case where the system S  satisfies OSC, the intersection of the pieces of the dendrite K ( )S  
is simply connected and has zero measure in K . Therefore, such an intersection is a subdendrite in 
K . In [1] it was proved that for any n there is a self-similar dendrite K  in the plane that contains n 
pieces K Kn1,...,  and a subdendrite ′K  such that for any i j n, {1,..., }∈ , K K Ki j� �= .

2. Preliminaries

2.1 Self-similar sets.

Definition 2.1: Let S= { , , }1S Sm  be a system of contraction similarities in n . A compact nonempty 

set K  that satisfies equation K S K
i

m

i= ( )
=1


 is called  the attractor of the system S  or the set that is 

self-similar with respect to the system S . 

We denote by I m= {1, , }  the set of indices of the system S, then I I
n

n*

=1
=

∞



 denotes the set of 

all words i = 1i in  of finite length in the alphabet I , called  multi-indices. We use the notation 
S S S S Sj j jn j j jnj = =

1 2 1 2

 , and denote S Kj( ) by K j . The sets K j , where j = 1 2j j jn , are called  copies 

of order n of the set K . For a word i = 1i in , with n ≥1, we denote i− −:= 1 1i in . We denote by | |K  the 
diameter of K .

The set of all infinite strings (or addresses) I Ii
� �� �= = ,1 2� � � �  is called  the index space of the 

system S . The mapping � : I K� �  that maps a sequence � � �I  to the point x K
n

n
=

=1
1∩ …β β  is called 

the address map for the attractor K . Then for each x K∈ , the set � �1( )x  is a set of addresses of the 
point x .

Following M. P. W. Zerner, we define F S I:= { : }*i i∈  to be the semigroup with identity generated 
by S. We set 
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F f F q bq bb f:= { : ( , ]}∈ ∈ min

where q q qmmin min:= { ,..., }1  and b ≥ 0.
Given the system S, we define N b x S F K B x b Kb( , ):= #{ : ( ,2 | |)}j j� �  and N b N b x x K( ) = { ( , ) : }max .∈
Given a probability vector p = { ,..., }1p pm  we denote by µp the Bernoulli measure with the probabil-

ity vector p  which assigns to each cylinder i i In1...  the value pi in1...
.

Let s  be the similarity dimension of the system S, that is, the solution of Moran equation 
q qs

m
s

1 ... =1+ + . We denote by ν  the Bernoulli measure µp with probability vector p = { ,..., }1q qs
m
s . The 

natural measure µ*  on K  is defined by the equation � � �* 1( ) = ( ( ))A A� .

Theorem 2.2 ([10], Theorem 1.6.3.): Let ( , )X ρ  be a metric space, and µ  a Borel probability measure 
on X . Fix a Borel set A X⊆ . Assume that there exists a constant c� �(0, ] such that 

lim �( ( , ))B x r
r

ct �

for all points x A∈  except perhaps for countably many.
Then the Hausdorff measure Ht  satisfies 

H E c Et
t( ) 8 ( )1� � �

for every Borel set E A⊆ .
If, conversely,

lim �( ( , )) < ,B x r
r

c x At � �� �for all

then �( ) ( )E H Et�  for every Borel set E A⊆ . 

Definition 2.3: We denote by J  the set of addresses � = ...1 2a a I�  possessing the following property: 
for any i = ...1 2

*i i i In ∈  there is k� � {0} such that a a a i i ik k k n n+ + +1 2 1 2... = ... . 

Proposition 2.4: For any Bernoulli measure µp on I , µp J( ) =1 . 

Proof. Consider the set J I Jc = ∞ \ . If � = ...1 2a a Jc� , then there is j = 1
*j j In ∈ , such that for any 

k� � {0}, a a j jk k n n� � �1 1  .
Let W I a a j jk k k n nj, 1 1:= { : }� � ��

� �  . Notice that �p kW p( ) =1,j j�  and for any s∈ , 
�p k k n k sn

sW W W p( ... ) = (1 ), , ,
1

j j j j� � � �� �
� .

Since Jc  is the intersection of all sets W kj, , J W Wc
k k sn� � � �( ... ), ,j j  for any s∈ . Hence, µp

cJ( ) = 0  
and µp J( ) =1 .

Throughout this paper, we consider the case where the maps Si  are the similarities and the attrac-
tor K  is connected. In this case, we say K  is a  self-similar continuum.

We say that the system S  satisfies the one-point intersection property if for any nonequal pieces 
K K i j Ii j, , , ∈  of order 1 of the attractor K , #( ) 1K Ki j� � .

2.2  Dendrites

Definition 2.5: A  dendrite is a locally connected continuum that does not contain a simple closed 
curve. A  self-similar dendrite is a self-similar continuum, which is a dendrite. 

We shall use the notion of the order  of a point in the sense of Menger-Urysohn (see [11, Vol.2, 51, 
p.274]) and denote by Ord p X( , ) the order of the continuum X  at a point p X∈ . If X  is a dendrite, 
then for each point p X∈  the number of components of the set X p Ord p X\ { } = ( , ) is finite whenever 
either of these is finite. The points of order 1 in a continuum X  are called  end points of X ; A point 
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p  of a continuum X  is called a  cut point of X  if Ord p X( , ) = 2 . Points of order at least 3 are called  
ramification points of X .

3. Ramification points for self-similar dendrites

First, we recall the theorem we proved in a recent paper [1]

Theorem 3.1: [1]. Let S= { ,..., }1S Sm  be a system of contracting similarities in d  and let the attractor 
K  of S be a dendrite. If S  has the WSP, then there is M  such that for any x K∈ , Ord x K M( , ) ≤ . 

Proof. By Zerner’s Theorem [16, Th.1,(4a)], for any a > 0  there is a number Ma  such that for any b > 0  
and x d∈ , 

#{ : ( ) ( ) } <S F S K B x Mb ab ai i� � � � (1)

Let Q Qn1,...,  be some finite set of connected components of K x\ { } . Let � < ( )
1� �k n

kQmin diam . For each 

1 ≤ ≤k n , take some z B x Qk k�� �( , )� . There is jk I∈ *  such that z Kk k
∈ j  and | | <| |K K

k k
j j

� �� . Then 

S F
k bj ∈ , where b

K
=
| |
ρ .

Since K  is a dendrite and x K
k

∉ j , the sets K
kj

 lie in Qk  and therefore are disjoint. All they have 

non-empty intersection with the ball Bρ . Taking a K=| | we have ab = ρ .
So, by (1), the number of components n Ma≤  for any x K∈ .
Note that Ord( , )x K  allows us to evaluate the upper density of the measure µ*  at the point x .

Lemma 3.2: Let S= { ,..., }1S Sm  be a system of contractive similarities in the Hilbert space X  and let the 

attractor K  of S be a dendrite. If Ord( , )0x K M≥  for some x K0 ∈ , then 
b

s
min

sB x b
b

M q
�

�
�

�
�

�

�
�

0

*
0( ( , ))

3lim
� . 

Proof. Choose M  components Q QM1, ,  of K x\ { }0 . Let � = {| |,1 }min Q k Mk � �  and take any b < δ .  

For each k , Q S x bk �
�
�
�

�
�
� � �0 ,

2
3

. Take some x Q S x bk k� � �
�
�

�
�
�0 ,

2
3

. There is a copy K
kj

 of K  that con-

tains xk  and satisfies the inequality b q K b
min k3

<| |
3j ≤ , which implies �*( ) >

3
K b q

k min

s

j
�

�
�

�

�
� .

Each of the copies K
kj

 is contained in Q B x bk ∩ ( , )0 , therefore they are disjoint. Consequently, for 
any b < δ ,

� �*
0

=1

*
( ( , )) ( )

3
.B x b

b

K

b
M q

s
k

M
k

s
min

s

� �
�

�
�

�

�
�� j

As a direct consequence, we see that if the order of a point x0  is infinite, then the upper density of 
µ*  at this point is also infinite.

Lemma 3.3: Let S= { ,..., }1S Sm  be a system of contractive similarities in the Hilbert space X  and let the 

attractor K  of S be a dendrite. If Ord x K( , ) =0 ∞ for some x K0 ∈ , then 
b

s
B x b
b�

�
0

*
0( ( , )) =lim

� .

Surprisingly, the point x0  is not a unique point that has an infinite density, because this density 
property is inherited by all points in the set π ( )J .

Proposition 3.4: Let S= { ,..., }1S Sm  be a system of contractive similarities in the Hilbert space X  and 
let the attractor K  of S be a dendrite. If Ord x K( , ) =0 ∞ for some x K0 ∈ , then for any y J�� ( ) ,
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b
s

B y b
b�

�
0

*( ( , )) = .lim
�

Proof. For any M > 0  there is a δ > 0  such that for any b� (0, )�  the inequality �
*

0( ( , ))
3

B x b
b

M q
s

min
s

�
�

�
�

�

�
�  

holds. Fix such b and take j∈ I *  such that x K0 ∈ j and bq K bmin <| |j ≤ .

If z K∈ j , then �
*( ( ,2 ))
(2 ) 6
B z b
b

M q
s

min
s

�
�

�
�

�

�
� .

If y J�� ( ) , then for any j there is i  such that y S K∈ i j( ) and therefore B y bq S B x b( ,2 ) ( ( , ))0i i⊃ . 
Therefore, 

�*( ( ,2 ))
(2 )

>
6

.B y bq
bq

M q
s

min
s

i

i

�

�
�

�

�
� (2)

We see that for any y J�� ( )  and any M  there is δ > 0  such that inequality (2) holds for any b < δ , 
which completes the proof.

Theorem 3.5: Let S= { ,..., }1S Sm  be a system of contractive similarities in the Hilbert space X  and let 
the attractor K  of S  be a dendrite. If Ord x K( , ) = ∞  for some x K∈ , then H Ks( ) = 0 . 

Proof. By Proposition 2.4, ν ( ) = 0Jc . Therefore, by the definition of µ* , � � �* *( ) = ( )J K . Consequently, 
for any y J�� ( ) , � � �* *( ( , ) ( )) = ( ( , ))B y r J B y r� . It follows from Theorem 2.2, that H Ks( ) = 0 .

4. An example of infinitely ramified dendrite in the Hilbert space

Let X  be the Hilbert space l2 with orthonormal base { , , }.1 2e e   A point of X  is denoted by 

x = ( , ,...) =1 2x x x ek k∑  and  x = 2∑xk .
Denote by σ  the following permutation of the set  : 

� ( ) =
2 1 = 2 1,
2 = 2 2,
1 = 2

n
k n k k
k n k k

n

� � �
� �

�

�
�

�
�

if
if
if




We define an orthonormal linear map Oσ  by formula 

O x e x x x x x x x
k

k k� �( ) = = ( , , , , , , ...).
=1

( ) 2 4 1 6 3 8 5x �

Let X1  be the subspace of X  which is the linear hull of the set { , }2 1e kk� �  and set inductively 
X O Xn n�1 = ( )� . Thus, Xn  is the linear hull of the set { , }2( ) 3e kn k� � � . By definition, X Xk k� �1 for any 
k∈ .

Define the system of similarities S= { , , }0 1 2S S S  by equations 

S e S e S O0 1 1 1 2( ) =1 / 2( ), ( ) =1 / 2( ), ( ) = ( / 2).x x x x x x� � �

Since for i = 0,1,2, Lip Si =1 / 2 , the similarity dimension s  of the system S is equal to 23log .
Let K  be the attractor of the system S. The attractor K  contains the unit segment I e0 1= [0, ] and 

all its images I S I ek
k k

k= ( ) = [0,2 ]2 0 2 1
�

� , which form an infinite countable set of pairwise orthogonal 
segments with common endpoint 0 .

We state the following properties of the system S and its attractor K .

Lemma 4.1: The system S  satisfies the open set condition. 

Proof. We construct the open set W  for the system S  in the following.
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Consider an open bicone-shaped set (see Fig.1) 

W X x x e x0 1 1 1 1= : 0 < <1, <1 / 2 |1 / 2 |x x� � � �� � 

and note that for any k l, ∈ , S W S Wk l
2 0 2 0( ) ( ) = {0}� �  and for any k l≠  in  , S W S Wk l

2 0 2 0( ) ( ) = {0}∩ . 
Put W S W

k

k= ( )
=0

2 0

∞

.

It is clear that S W W2( ) ⊂  and that S W S W W W0 1 0( ) ( )� � � .

Since W W� � = {0}, S W S W e0 1 1( ) ( ) = {1
2

}∩ . As a consequence, S W S W0 2( ) ( ) =� � .

From S W W2 0( ) = {0}∩  one sees that S W S W2 1( ) ( ) = {0}∩  and S W S W2 0( ) ( ) =� � . Hence, for any 
nonequal i j, {0,1,2}∈ , S W S Wi j( ) ( ) =� � .

Although the system S satisfies the Open Set Condition, this does not guarantee that the Hausdorff 
dimension of K  is equal to s  because the space X  is not finite dimensional.

Lemma 4.2: The self-similar boundary of K  is ∂K e= {0, }1 . K  has the single intersection property, and 
K  is a dendrite. 

Proof. From [0, ]1e K W⊂ ⊂  it follows that K K1 2 = {0}∩ , K K e1 0 1= 1
2

� �
�
�

�
�
�
, and K K0 2 =� �.

Therefore, K  is connected and has the single intersection property. Moreover, the intersection 
graph of the system { , , }0 1 2K K K  is a tree. By [15, Theorem 2.6], K  is a dendrite.
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0

1
2
e3

1
4
e5

K1

K2

K0

e1

1
2
e1

Figure 2. The projection of the set K to the subspace Span(e1, e3, e5).

Proof. From [0, e1] ⊂ K ⊂ W it follows that K1 ∩ K2 = {0}, K1 ∩ K0 =
{1
2e1}, and K0 ∩K2 = ∅.
Therefore, K is connected and has the single intersection property. More-

over, the intersection graph of the system {K0,K1,K2} is a tree. By [15,
Theorem 2.6], K is a dendrite. □

Lemma 4.3. The attractor K contains a ramification point of infinite order.
Consequently, Hs(K) = 0.

Proof. Since K0 ∪ K1 ⊂ W0 is connected, for any k ∈ N, Sk
2 (K0 ∪ K1) lies

in Sk
2 (W0) and is connected. Therefore, the set K\{0} is a disjoint union

∞⊔
k=0

Sk
2 (K0 ∪ K1\{0}) of connected components. Since Ord(0,K) = ∞, by

Theorem 3.5, Hs(K) = 0. □

Lemma 4.4. For any copy Ki1...in of order n the number of its neighbors of
equal size is not greater than 2n.

Proof. The self-similar boundary of K consists of 2 points, 0 and e1, thus,
for any copy Ki1...in , its boundary points are Si1...in(0) and Si1...in(e1).

Note that if in = 2, then Si1...in(0) = Si1...in−1(0). If in ̸= 2, Si1...in(0)
is equal to Si1...in−1(e1/2). Consequently, all the ramification points of K
except the point 0 can be represented as Si1...in(e1/2) for some i1, .., in, where
in ̸= 2.

In the same way, if in = 1, then Si1...in(e1) = Si1...in−1(0) and if in ̸=
1, then Si1...in(e1) is an end point of K. Therefore, the only neighbor of
Ki1...in−11 of the same size at the point Si1...in(0) is Ki1...in−10.

If ∂Ki1...in contains the origin 0, then Si1...in = Sk
2S1S

l
0, where k+l+1 = n

and k ≥ 0, l ≥ 0. There are n possible choices for k and l, so Ki1...in has
n−1 neighbors of the same size at this point. The total number of neighbors
of Ki1...in in this case will be n.

DENDRITES IN HILBERT SPACE 7

Since for i = 0, 1, 2, Lip Si = 1/2, the similarity dimension s of the system
S is equal to log2 3.

Let K be the attractor of the system S. The attractor K contains the unit
segment I0 = [0, e1] and all its images Ik = Sk

2 (I0) = [0, 2−ke2k+1], which
form an infinite countable set of pairwise orthogonal segments with common
endpoint 0.

We state the following properties of the system S and its attractor K.

Lemma 4.1. The system S satisfies the open set condition.

1
2
e3

1
4
e5

S2
2(W0)

S2(W0)
W0

e1

Figure 1. The projection of the set W to the subspace Span(e1, e3, e5).

Proof. We construct the open set W for the system S in the following.
Consider an open bicone-shaped set (see Fig.1)

W0 = {x ∈ X : 0 < x1 < 1, ∥x− x1e1∥ < 1/2− |1/2− x1|}

and note that for any k, l ∈ N, Sk
2 (W0) ∩ Sl

2(−W0) = {0} and for any k ̸= l

in N, Sk
2 (W 0) ∩ Sl

2(W 0) = {0}. Put W =
∞⋃
k=0

Sk
2 (W0).

It is clear that S2(W ) ⊂ W and that S0(W ) ∪ S1(W ) ⊂ W0 ⊂ W .
Since W ∩ −W = {0}, S0(W ) ∩ S1(W ) = {1

2e1}. As a consequence,
S0(W ) ∩ S2(W ) = ∅.

From S2(W )∩W 0 = {0} one sees that S2(W )∩S1(W ) = {0} and S2(W )∩
S0(W ) = ∅. Hence, for any nonequal i, j ∈ {0, 1, 2}, Si(W ) ∩ Sj(W ) =
∅. □

Although the system S satisfies the Open Set Condition, this does not
guarantee that the Hausdorff dimension of K is equal to s because the space
X is not finite dimensional.

Lemma 4.2. The self-similar boundary of K is ∂K = {0, e1}. K has the
single intersection property, and K is a dendrite.

Figure 1: The projection of the set W  to the subspace Span e e e( , , )1 3 5 .

Figure 2: The projection of the set K  to the subspace Span e e e( , , )1 3 5 .
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Lemma 4.3: The attractor K  contains a ramification point of infinite order. Consequently, H Ks( ) = 0 .  

Proof. Since K K W0 1 0� �  is connected, for any k∈ , S K Kk
2 0 1( )∪  lies in S Wk2 0( )  and is connected. 

Therefore, the set K \ {0} is a disjoint union 
k

kS K K
=0

2 0 1( {0})


�

� \  of connected components. Since 

Ord(0, ) =K ∞ , by Theorem 3.5, H Ks( ) = 0 .

Lemma 4.4: For any copy Ki in1...
 of order n the number of its neighbors of equal size is not greater than 

2n. 

Proof. The self-similar boundary of K  consists of 2 points, 0  and e1 , thus, for any copy Ki in1...
, its 

boundary points are Si in1...
(0) and S ei in1... 1( ) .

Note that if in = 2, then S Si in i in1... 1... 1
(0) = (0)

−
. If in ≠ 2 , Si in1...

(0) is equal to S ei in1... 1 1( 2)
−

/ . Consequently, 

all the ramification points of K  except the point 0  can be represented as S ei in1... 1( / 2)  for some i in1,.., ,  
where in ≠ 2.

In the same way, if in =1 , then S e Si in i in1... 1 1... 1
( ) = (0)

−
 and if in ≠1, then S ei in1... 1( )  is an end point of 

K . Therefore, the only neighbor of Ki in1... 11−
 of the same size at the point Si in1...

(0) is Ki in1... 10−
.

If ∂Ki in1...
 contains the origin 0 , then S S S Si in

k l
1... 2 1 0= , where k l n+ +1 =  and k l≥ ≥0, 0 . There are 

n possible choices for k  and l , so Ki in1...
 has n −1 neighbors of the same size at this point. The total 

number of neighbors of Ki in1...
 in this case will be n.

If ∂Ki in1...
 contains the point e1 / 2 , then S S S S Si in

k l
1... 0 2 1 0=  or S S S Sk l

1 2 1 0 , where k l n+ + 2 =  and 

k l≥ ≥0, 0. There are n −1  possible choices of k  and l , so Ki in1...
 has 2 1n −  neighbors of the same size 

at the point e1 / 2 . The total number of neighbors of Ki in1...
 in this case will be 2n.

Consider a copy S Kj i( ) , where i = 1i in k − , j = 1j jk . Its order is n. Its self-similar boundary is 
{ (0), ( 2)}1S S ej j / , and the number of its neighbors is equal to 2( )n k−  which is less or equal than 2n.

Lemma 4.5: If K Ki in j jn1... 1...
=� � , then 

� ( , ) := { ( , ) : , } 2
1... 1... 1... 1...

K K d x y x K y Ki in j jn i in j jn
inf � � � �nn. (3)
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K10

K11

K12

K01

K00

K02

K
2
2

0

K21

K20

e1

1
2 e1 − 1

4 e3

1
2 e1 + 1

4 e3

1
2 e1

1
8 e7

1
4 e5

1
2 e3 Sk

2 (0) = 0, S0(0) = S1(0) =
e1
2

S0(e1) = e1, S1(e1) = 0, Sk
2 (e1) =

e2k+1

2k

Figure 3. The copies Kij of order 2 of the set K.

If ∂Ki1...in contains the point e1/2, then Si1...in = S0S
k
2S1S

l
0 or S1S

k
2S1S

l
0,

where k + l + 2 = n and k ≥ 0, l ≥ 0. There are n − 1 possible choices of
k and l, so Ki1...in has 2n − 1 neighbors of the same size at the point e1/2.
The total number of neighbors of Ki1...in in this case will be 2n.

Consider a copy Sj(Ki), where i = i1 . . . in−k, j = j1 . . . jk. Its order is n.
Its self-similar boundary is {Sj(0), Sj(e1/2)}, and the number of its neighbors
is equal to 2(n− k) which is less or equal than 2n. □

Lemma 4.5. If Ki1...in ∩Kj1...jn = ∅, then

δ(Ki1...in ,Kj1...jn) := inf{d(x, y) : x ∈ Ki1...in , y ∈ Kj1...jn} ≥ 2−n. (3)

Proof. This is clear for n = 1, because δ(K0,K2) = 1/2.
In the case where i1 . . . in−1 = j1 . . . jn−1, Ki1...in−1in ∩ Ki1...in−1jn = ∅

implies {in, jn} = {0, 2}. Therefore, δ(Ki1...in−10,Ki1...in−12) = 2−n.
If Ki1...in−1 ∩Kj1...jn−1 = ∅, then δ(Ki1...in ,Kj1...jn) ≥ 21−n.
If Ki1...in−1 and Kj1...jn−1 have a common point y = 0 or y = Sk(

e1
2 ), then

one of the copies, say Ki does not contain y, therefore δ(Ki, y) = 2−n, which
implies (3). □

Lemma 4.6. For any x ∈ K, µ∗(B(x, 2−n)) ≤ 2n+ 1

3n
.

Proof. There is a copy Ki1...in that contains x. If such a copy is unique, then
the ball B(x, 2−n) intersects at most 2n+1 copies of order n, which implies

µ∗(B(x, 2−n)) ≤ 2n+ 1

3n
. If x is a common point of several copies of order

n then the open ball B(x, 2−n) intersects at most 2n copies of order n, and

µ∗(B(x, 2−n)) ≤ 2n

3n
. □

Lemma 4.7. dimH(K) = s.

Proof. If 2−n−1 < r < 2−n, then µ∗(B(x, r)) < µ∗(B(x, 2−n)) ≤ 2n+ 1

3n
.

Figure 3: The copies Kij  of order 2 of the set K .
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Proof. This is clear for n =1, because δ ( , ) =1 / 20 2K K .

In the case where i i j jn n1 1 1 1= − − , K Ki in in i in jn1... 1 1... 1
=

� �
� � implies { , } = {0,2}i jn n . Therefore, 

� ( , ) = 2
1... 10 1... 12

K Ki in i in
n

� �

� .

If K Ki in j jn1... 1 1... 1
=

� �
� � , then � ( , ) 2

1... 1...
1K Ki in j jn
n� � .

If Ki in1... 1−
 and K j jn1... 1−

 have a common point y = 0  or y S e
k=
2
1�

�
�

�
�
� , then one of the copies, say Ki  does 

not contain y , therefore � ( , ) = 2K y n
i

� , which implies (3).

Lemma 4.6: For any x K∈ , �*( ( ,2 )) 2 1
3

.B x nn
n

� �
�   

Proof. There is a copy Ki in1
 that contains x . If such a copy is unique, then the ball B x n( ,2 )−  inter-

sects at most 2 1n +  copies of order n, which implies �*( ( ,2 )) 2 1
3

B x nn
n

� �
� . If x  is a common point 

of several copies of order n then the open ball B x n( ,2 )−  intersects at most 2n copies of order n, and 

�*( ( ,2 )) 2
3

B x nn
n

� � .

Lemma 4.7: H K sdim ( ) = . 

Proof. If 2 < < 21− − −n nr , then � �* *( ( , )) < ( ( ,2 )) 2 1
3

B x r B x nn
n

� �
� .

Combining these two inequalities, we obtain �
*

2
( ( , )) < 3(1 2 )B x r
r

rs � log . Therefore, for any t s< , 

r t r

s tB x r
r

r r
� �

�� �
0

*

0
2

( ( , )) 3(1 2 ) = 0lim lim log� .

By Theorem 2.2, this means that for any t s< , H K Kt ( ) > ( ) =1*µ , we therefore have H Kt ( ) = ∞  for 
any t s< . Consequently, H K sdim ( ) = .

5 Conclusion

This study is devoted to self-similar dendrites in the d  and Hilbert space. It has already been proved 
that for any self-similar dendrite K  in d  that satisfies the weak separation property, the ramifica-
tion order of K  is finite. This paper presents a new theorem for self-similar dendrites in a Hilbert 
space. This theorem is as follows: if a self-similar dendrite K  has a ramification point of infinite order, 
then the s -dimensional Hausdorff measure K  is zero, where s  is the similarity dimension.

Currently, no examples of infinitely ramified self-similar dendrites are known. We have con-
structed an infinitely ramified self-similar dendrite K  in a Hilbert space that satisfies the Open Set 
Condition. In this case, as proved in the article, its Hausdorff measure H Ks( ) = 0 . Moreover, the 
Hausdorff dimension is equal to the similarity dimension. This result is obtained by applying the 
inverse Frostman type theorem for Hausdorff Measures in metric spaces.
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