
Received November 9, 2024; Accepted December 17, 2024; Online January 30, 2025

Using intelligent optimization algorithms, determine 
the quality of the nitrogenous base substituted for 
the MT-ND5 gene sequence
Marwan S. Jameel1,*, Sura J Hussein2

1Department of Environmental Technology, College of Environmental Sciences, University of Mosul, Iraq; 2Department of Statistics, College of 
Computer Science and Mathematics, University of Mosul, Iraq.

Abstract
This paper focuses on the application of intelligent optimization techniques in genetic engineering, 
using the MT-ND5 gene sequence as a case study to determine the specificity of nitrogenous base sub-
stitution. We used data from the NCBI database and analyzed it using smart optimization algorithms 
for the mathematical model of the objective function of the type of dynamic programming that comes 
from the hidden Markov chain to find the chance of getting a true sequence that is highest. We com-
pared the results with the intelligent methods, demonstrating the effectiveness of these solutions in 
speeding up and enhancing the accuracy of the analysis through MATLAB simulations.
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1. Introduction

Identifying functions of gene sequences and determining the nitrogenous bases occurring in gene 
sequences accurately are very important since gene sequences bear individual details regarding 
creatures. Sample clustering can be made by pairwise comparisons of gene sequences by simplifying 
homolog gene comparisons in related species using molecular profiling. A Swarm Algorithm or Swarm 
Intelligence is used to eliminate the hard processing efforts and the problems such as local minima, 
slow convergence, and single-solution focus that standard optimization algorithms have in identi-
fying the nitrogenous base in gene sequences [1]. We can pair the MT-ND5 gene sequence, which is 
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the subject of our study here, and it is located in the mitochondrial genome. It has a crucial function 
particularly in the respiratory chain and in the production of ATP molecules. We can say Swarm 
Algorithms are a straightforward, simple application to the Penetrable Ellipsoids Model controller, 
neural network optimization, and interconnection weights of a fixed topology of neuro-fuzzy system 
problems; and widely used, the simple method that shows good results [2].

The main advantage of swarm algorithms is that they have low computational costs. For this 
reason, the long execution times of complex engineering problems are reduced by means of SA meth-
ods, providing faster response times than traditional optimization methods. The Swarm Algorithm 
also provides better quality performance than other optimization algorithms. SA can produce good 
results with less computational cost and faster convergence, providing a great advantage over clas-
sical optimization algorithms and genetic programming algorithms used extensively in gene studies. 
We aim to have the transgenic MT-ND5 gene, the first transgenic gene of microalgae. With swarm 
algorithms, we offer an alternative to modelling reliable and functional genetic sequences that are of 
great importance by providing an example for determining the base ratio. Thus, believing that the 
work has introduced noteworthy contributions, and a guide for various sections of the scientific field 
has been carried out [3].

1.1. Background and Significance

Biologically, transfer nucleic acid (TNA) plays the role of coenzyme for peptidyl transferase. Among 
them, mitochondria have strong specificity for producing 23s rRNA and 5s rRNA. When the structure 
and sequences of nucleotides meet the same conditions and can be used to organize mixed nucleotides 
with nucleotides in the same withdrawal, they can sometimes only figure out the target of nucleic 
acid. Determining the purpose of disease research is crucial. At the same time, developing convenient, 
fast, efficient, and effective technology and equipment to replace traditional manual work is also our 
primary goal. In addition to studying the structure of nucleic acids and enzyme bases, studying bases 
is one of the most useful methods for studying problems such as species identification and disease. 
Currently, computational-oriented studies model these issues as complex mathematical problems and 
attempt to solve them using intelligent technologies such as swarm intelligence [4]. 

As the biological spectrum and computer technology continue to advance, biological databases are 
now capable of storing vast amounts of nucleic acid and protein biology data. At the same time, bio-
informatic spiders are beginning to digitize molecular biology signals and information. The computer 
converts nucleic acid signals into digital signals to speed up its search process. Researchers input 
digital signals and data that adhere to international standards. The capacity to perform significant 
functions, like altering gene defects and influencing epigenetics, is crucial. Acrylic DNA binds to sugar 
and utilizes the RAM size mode to interact with mRNA, a crucial tool for gene replication and expres-
sion. The two competing methods, CreateMap and Facetsmap, distinguish this approach from other 
multiple inference methods [5].

1.2. Research Objectives

The primary purpose of this study was to determine the possibility of using swarm algorithms in 
place of other optimization methods in this specific application. Secondly, the difficulties of the chosen 
application were to illustrate the reason for insufficient information to suggest a more general deter-
mination of bioinformatics. The objective of this study was, in general, to prove the potential of Swarm 
Intelligence, which has already been proven to be a good choice for the general optimization issues 
of bioinformatics, but which has not been tested in this specific application before. The application 
of Swarm Intelligence has two main layers. The first layer is directed to make the substitution of 
the nucleotide correctly from the raw data without any preprocessing. The second layer is about the 
determination of the substituted nitrogenous bases. The idea under the determination of substitution 
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of nitrogenous bases is to define the closest neighbour of the original solution, setting restriction 
conditions.

It was also found that the deterministic model prediction of the binding scores was enough for a 
higher level of coarse-graining. Finally, it was shown that the presented DNA scaling function gener-
ated two-fold better members compared to similar models in terms of recombination and articulation 
rates. Metaheuristics are proposed for the fine-grained redundancy reduction on formed particles, and 
they had better performance. 

2. Overview of MT-ND5 Gene and Nitrogenous Bases

MT-ND5 (ND5) is the gene sequence in the mitochondrial genome of humans. It plays a vital role in 
forming a multisubunit protein complex with other NADH dehydrogenase genes to form complex I, 
which widely exists in eukaryotes from lower to higher organisms. Substituted nitrogenous bases are 
the key material basis of gene expression in organisms, which play an important role in genetic infor-
mation and energy metabolism. More and more studies show that there always exist some variations 
in nitrogenous bases in the MT-ND5 gene sequence. The SNP, haplotype, typical, or special mutation 
can be significantly related to physical and biochemical characteristics and clinical diseases [6].

In recent years, there have been various tools for determining nitrogenous bases in the MT-ND5 
gene sequence using experimental methods. The chemical, physical, and biological methods make 
the determination process very complex and time-consuming. The bioinformatics method based on 
sequence information may lead to significant improvements in the speed and success rate of nitrog-
enous base determination. The key to the bioinformatics method is to accurately determine the cor-
responding rule between the content of nitrogenous bases and feature vectors. Currently, there is no 
appropriate method to address all types of nitrogenous base variations simultaneously [7].

2.1. Types and Significance of Nitrogenous Bases

The gene sequence of MT-ND5 contains four nucleotides: A, T, C, and G. They perform physiological 
functions of carrying genetic information, transferring genetic information, reading genetic informa-
tion, and storing genetic information. The biochemical effects of these bases on humans depend on 
the recognition of these nitrogenous bases in more specific sequences. Because of this particularity, 
some researchers want to replace or modify the species of these bases in gene sequences so that they 
can become new gene therapy drugs. This also gives some bases a role outside of providing energy and 
matter for humans.

2.2. Traditional Methods for Identifying Base Substitutions

The traditional method for examining the nucleotide substitution mutation of the MT-ND5 gene 
sequence identification is to observe the electropherogram data in computer software. This software 
usually utilizes fluorescence detection technology to determine DNA fragments and uses a different 
fluorescence color to describe the bases A, C, G, and T. When evaluating the maximum peak in the 
chromatogram at each nucleotide position detected to be higher than 50 p.u. and the average peak-to-
peak distance, it would be more than 3 p.u. and would appear in different colors [8].

To conduct the base determination, for example, to examine whether an A or a G base is in a het-
erozygous mutation site, computer software would display two types of base peaks known as hetero-
zygous peaks and also display average peak height ratios. If the value exceeds a specified threshold, 
the substitution would be considered valid. A significant disadvantage of using the software, however, 
is the need for microscopic examination to determine the nucleotide substituting residues in these 
typical mutation cases. The software may produce ‘background fluorescence,’ which can affect the 
examination of the results. When the signal is weak, background fluorescence may be generated, and 
human examination and judgment of the results must be made when they are questioned
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3. Viterbi Algorithm

The Viterbi algorithm leverages structural parameters to analyze sequences and uncover hidden 
relationships. Specifically, it identifies the relationship between the MT-ND5 gene sequence and the 
three domains using the dynamic programming variable vi(t). Here, t represents the position within 
the sequence (including local start and end sites) and is aligned to the observed sequence, traversing 
through branches of a T-junction-like structure. The algorithm iteratively updates the probability (p)
and traceback pointers (tb) step by step as it processes the observed sequence, ultimately determining 
the most probable path. Each symbol Xi in the gene sequence is mapped to an observable sequence 
efficiently, without considering the secondary structure of the genes in the three domains. The trans-
lation function utilizes combinations such as Xij + Xk to generate iij-parameters based on two or three 
branches of the T-junction, respectively. Only the 2D coordinate symbols are affected by the transla-
tion function’s output [9].

3.1. Limitations and Challenges

Within fast-evolving regions in the mt-genomes, the good organization of the nucleotide sequence 
on codons is lost. It causes a significant error in the nucleotide substitution counts using informa-
tion on amino acid replacement. It’s possible to consider that the different swarm algorithms have a 
wider application in molecular bioinformatics. They can be used to solve a wide spectrum of problems 
that, using different sequences of nucleotides or amino acids, establish based on their distributions 
between the control sequences, such as motif search, promoter search, gene prediction, analyzing rate 
of mutations, and so on. 

4. Introduction to Swarm Intelligence Algorithms

In the swarm intelligence approach, cutting-edge research proves that groups such as colonies of ants, 
schools of fish, and colonies of bacteria (in general, collective animal behavior or swarms) are capable 
of finding good solutions for the problem of optimization. What emerges from simple behavioral rules 
can be invaluable to our understanding of the process of organizational structure of the collective 
entities. Recently, swarm intelligence algorithms for problem optimization have gained importance 
with numerous origins in nature, such as insect swarming, fish schools, plants, microorganisms, and 
even galaxies. The emergence of the swarm concept arises from collective behavior, where intrinsi-
cally decentralized control is derived from simple interaction rules. Three basic elements characterize 
the swarm: lack of central control, collective behavior evolution, and distributed subprocesses. These 
features are prevalent in collective entities [10].

OM (Ordinary Individuals Model): The model is composed of N mobile and passive individuals, all 
within the same environment. These individuals are placed at several distinct points, where their 
generalized coordinates form an array defined in the search space. In a real swarm, a part of the 
search space is usually allocated to each agent. The OM model assumptions differ from practical 
aspects inherent to the classic Individual-based Model with Movement; the first reflects traditional 
aspects of a mathematical model destined to the analysis of the operation of a hybrid algorithm, while 
the second deals with a concrete representation of the animal and its movement. Nonetheless, the two 
models are means for mathematically enhancing local search strategies, random search strategies, 
visual range effects, and the social structure of artificial and natural swarms. A set of explanatory dia-
grams about several important search strategies that swarm agents perform when searching in their 
respective environments has been developed. The search strategies include termite mound searching, 
caribou mixed search, school behavior, and caribou synchronized motion [11,16,17].

In this study, a two-stage swarm-based optimization algorithm for predicting the position of the 
substitution for nitrogenous bases and their types in MT-ND5 gene sequences is proposed. Unlike 
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other previous studies, our study carries out the prediction of nitrogenous base substitutions within 
a single gene sequence, but multi-class prediction is achieved within a single stage. Whether sin-
gle-stage or two-stage optimization models are applied, the nitrogenous base substitution models that 
are handled give good classification performance. Adaptive comparative search, bat algorithm, cat 
swarm optimization, and a hybrid of smaller optimization algorithms are utilized in the single-stage 
optimization model, while two-stage optimized methods are constructed with an artificial immune 
recognition system, whale optimization algorithm, improved differential search algorithm, and a 
hybrid of smaller optimization algorithms.

4.1. Methodology for Determining Substituted Nitrogenous Bases

In this work, a series of MT-ND5 gene sequences in humans were compared for sequence lengths of 
up to (1812). An attempt was made to identify nitrogenous base substitutions. When there are large 
amounts of amino acid substitutions, it is possible to draw new conclusions. However, this is very 
rare. This additional cost is due to the need to use large amounts of amino acid position data and/
or the logistic constraint of the sequence and occurrence of amino acid features by chance. Program 
matrix for comparing extinct mitochondrial DNA with current human data. Substitutions in MT-ND5 
gene sequences are given taking into account the location and genetic code. The search starts with the 
replacement of new divergent nitrogenous bases corresponding to the calculated differences. The cal-
culations of nitrogenous base substitutions lead to results that are used with a selection rule chosen 
for biological reasons.

In Swarm Intelligence, the goal is to evolve a population of solutions (candidate state sequences) 
toward an optimal sequence by minimizing a cost function (which could be related to the log-probabil-
ities of the HMM). Finds the most likely sequence of hidden states given an observed sequence (using 
HMM parameters such as transition and emission probabilities).

5. Proposed Approach Using Swarm Algorithms

Swarm intelligence algorithms, specifically the Ant colony optimization(ACO), particle swarm optimi-
zation(PSO) with time varying acceleration coefficients, and simulated evolution with an integrated 
learning automaton have been discussed to determine the resultant sequences and substitutions based 
on the MT-ND5 gene. The proposed approach using these algorithms should be useful for custom 
splicing, introducing mutations, determining the effects of mutations, and developing gene vectors. 
Upon comparison between the three algorithms (Viterbi, ACO, PSO), results regarding techniques 
and applications were studied to determine the agreement of the results method-wise. The devised 
approach using three swarm intelligence techniques may be employed for multiple nucleotide pair-
wise analyses of any pair of homologous DNA and/or RNA sequences. Swarm Intelligence Algorithms 
that we choose PSO and ACO simulated as

Particle Swarm Optimization (PSO): Every particle in PSO represents a potential hidden state 
sequence. Both the global best (the best sequence discovered by the swarm) and the personal best (the 
greatest sequence they have discovered thus far) have an impact on the particles’ mobility as they 
scan the search space (possible sequences).

Ant Colony Optimization (ACO): Ants gradually construct solutions (sequences of states) in ACO. 
Pheromone trails, which are impacted by past successful solutions, and heuristic data, such as the 
transition and emission probabilities in HMM, determine the likelihood of choosing a particular state 
at each stage.

Results of the proposed method employing PSO-HMM, ACO-HMM, These techniques are capable 
of predicting and identifying relevant gene regions and introns [12, 15].
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5.1. Cost Function Definition

Establish a cost function that quantifies the degree of “fit” of a potential state sequence. The negative 
log-likelihood of the observed sequence given a specific hidden state sequence might serve as the cost 
function for an HMM.

Here’s an example of the cost function f(state sequence):

f a state state e state obsek k k(state sequence) = - ( )( ) +-log , log ,1 rrvationk
k

L

( )( )
=
å

1
 (1)

Where:
·	 a is the transition probability matrix.
·	 e is the emission probability matrix.
·	 statek is the hidden state at position k.
·	 observationk is the observed sequence at position k.

The cost function f(state sequence) for decoding a Hidden Markov Model (HMM) indicates the  
“fitness” of a candidate state sequence based on the HMM’s transition and emission probabilities. 
In layman’s terms, it assesses how well a given series of hidden states (such as ‘A’, ‘T’, ‘C’, and ‘G’) 
describes the observed sequence.
1-	 Transition Costs:

log(a(statek−1,statek)) (2)
 these account for the probabilities of moving from one state to the next. For each transition from 

statek to statek, you compute the log of the corresponding transition probability a(statek−1,statek).
2-	 Emission Costs:

log(e(statek,obsk)) (3)
 these account for how likely the observed symbols are, given the hidden states. For each state 

statek, you compute the log of the emission probability e(statek,obsk) (the likelihood of observing obsk 
in state statek.

3-	 Total Cost:
  The sum of all negated transition and emission costs is the total cost function (1). Because a lower 

cost translates into a higher likelihood, minimizing this cost is equivalent to identifying the most 
likely state sequence.

  In this section, substitution mutations were applied to the MT-ND5 gene sequence of humans to 
compare the matching ratio of the two sequences that can be obtained from the substitution pro-
cess. The intelligent swarm algorithm was used instead of the traditional algorithm used to deter-
mine the type of the nitrogenous base substituted for the MT-ND5 gene. The following algorithm 
was proposed to determine the type of the nitrogenous base substituted for the MT-ND5 gene for 
both humans and mice as follows:

Proposed intelligent algorithm for determining the type of substituted nitrogenous base:

Process 1: The four nitrogenous bases are encoded by converting the letter symbols into numbers 
which form the DNA chain as follows

A = 1, T = 2, C = 3, G = 4

Process 2: Definition of the elements of the hidden Markov model l = (A, B, p), where p represents 
the vector of the initial state with dimensions 1*N, and N = 4 represents the number of states. As for 
A, it represents the matrix of transitional probabilities between the hidden states, whose dimensions 
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are generally (N*N). And B represents the probability matrix linking the hidden states and the obser-
vations (the matrix of versions) with dimensions (N*M), where M = 3.

Process 3: Try substituting one of the rules (A, T, C, G) with(A, T, C, G) and counting all of the 
choices, which total 12.

Process 4: Finding potential hidden states using an intelligent algorithm, ACO or PSO. We can say 
solve the dynamical programming problem (1) using ACO or PSO.

Process 5: The series of cases resulting from step 4 is compared with the series of real cases. In this 
step, the type of the replaced nitrogenous base is estimated with its corresponding series of cases 
resulting from step 4. The Mean Squares Error (MSQ) and Match Ratio (MR) are found according to 
the mathematical equations (… and …).

MSQ q DecodeL
i

= -å1 2( )

Where, Q represents the true hidden states, 
decode represents the encrypted hidden states, 
and L indicates the chain’s length.

MR% = ((L – sum(error))|L) * 100
(error): denotes the logical expression vector and the error vector with dimension (L × 1).

6. Experimental Setup and Data Collection

6.1. Data Preprocessing and Feature Selection

Before executing a swarm intelligence algorithm, the original dataset should be normalized into values 
{1,2,3}. The primary sequence of the DNA consists of the A, T, C, or G bases. The biological system was 
defined with four types of genetic elements representing the individual structural components. The 
components define the human mitochondrial genome, e.g., the MT-ND5 gene.

6.2. Parameters and Settings for Swarm Algorithms

Parameter PSO (Particle Swarm 
Optimization)

ACO (Ant Colony Optimization)

Number of Particles/Ants num_particles (e.g., 30) num_ants (e.g., 30)
Number of Iterations max_iter (e.g., 100) num_iterations (e.g., 100)
Inertia Weight (w) w (e.g., 0.5) Not applicable
Cognitive Parameter (c1) c1 (e.g., 1.5) Not applicable
Social Parameter (c2) c2 (e.g., 1.5) Not applicable
Velocity Initialization Random initialization 

(zeros by default)
Not applicable

Pheromone Matrix (t) Not applicable pheromone (initialized with small positive 
values)

Heuristic Information (h) Not applicable heuristic (inverse of probabilities, optional)
Pheromone Decay Rate (ρ) Not applicable rho (e.g., 0.5)
Pheromone Deposit  
Amount (Q)

Not applicable Q (e.g., 1.0, affects pheromone addition)

Alpha (a) Not applicable alpha (e.g., 1.0, weight of pheromone 
importance)
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Beta (b) Not applicable beta (e.g., 2.0, weight of heuristic 
importance)

Solution Construction Update position based 
on velocity

Construct solutions using probability- 
based state selection

Personal Best (pBest) Tracked for each 
particle

Not applicable

Global Best (gBest) Tracked for the entire 
swarm

Tracked as the best solution found

Fitness/Cost Function Custom function to 
evaluate each particle

Custom function to evaluate each ant’s 
solution

6.3. Results and Analysis

Convert

A
→

C

A
→

T

A
→

G

C
→

A

C
→

T

C
→

G

G
→

A

G
→

C

G
→

T

T→
A

T→
C

T→
G

PS
O

-H
H

M M
SE

2.
31

73

2.
38

74

2.
32

06

2.
30

96

2.
31

84

2.
33

06

2.
35

82

2.
34

11

2.
34

22

2.
37

25

2.
29

14

2.
34

82

M
R

25
.2

20
8

24
.7

79
2

26
.1

03
8

24
.9

44
8

25
.4

96
7

24
.3

92
9

25
.8

83

24
.3

37
7

25
.5

51
9

24
.8

34
4

24
.3

37
7

25
.4

41
5

AC
O

-H
H

M M
SE

1.
27

81

0.
27

15
2

1.
68

87

1.
32

45

0.
27

53
9

0.
21

08
2

1.
64

9

0.
20

97
1

0.
61

58
9

0.
27

31
8

0.
28

53
2

0.
65

56
3

M
R

68
.0

46
4

72
.8

47
7

81
.2

36
2

66
.8

87
4

72
.4

61
4

78
.9

18
3

81
.6

77
7

79
.0

28
7

84
.6

02
6

72
.6

82
1

71
.4

68

83
.6

09
3

6.4. Discussion and Implications

In conclusion, a comparison of the results and computations yields a simple procedure for solving a 
complex problem of dynamical programming of Viterbi methods. In summary, the application of the 
group swarm algorithms should be useful for conducting an evolutionary spectroscopy selection of 
the most significant group of spectral features from a very large set of possibilities. Such a selection 
can be significant in a variety of applied fields, particularly in quantitative spectral analysis, DNA 
sequencing, and function prediction, such as analyzing gene sequences for overlapping coding regions 
and hidden stop codons.

6.5. Interpretation of Results

After studying the design of swarm algorithms for solving mathematical programming, which was 
derived from the study of the maximum likelihood of obtaining the truth chain after applying the 
hidden Markov chain, we need to conduct an application to verify its effectiveness. We derived the 
design by studying the human gene sequence MT-ND5. We achieved very low square errors (0.2), 
and we also reached 84% matching rates. Some bases were not found. We obtain a set of possible 
functional formulas for the quasi-specific types of the ND5 gene sequences. With four bases at a 
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certain distance, the goal was to obtain a set of quasi-specific types for all possible distances from 
the human gene sequence to each functional formula. This will aid in understanding the interaction 
windows within the ND5 gene. Additionally, it enables the identification of quasi-specific gaps in the 
sequences. For cases of four bases per sequence, it was possible to obtain quasi-specific types for some 
functional formulas.

This paper has the potential to develop into a series of papers on sequence data analysis using 
hybrid manipulations of the swarm algorithm. Future publications will delve into the entire mito-
chondrial DNA molecule, conducting more base data substitution experiments and examining the 
hydration rules associated with the substituents. Another area of interest is the algorithm’s ability to 
assign appropriate base substitutions for comparing homologous and analogous protein subunits. We 
can apply swarm intelligence algorithms as optimization techniques to HMM decoding. While ACO 
is more straightforward than PSO in its application to sequence optimization, it can be more flexible 
when dealing with situations such as HMM decoding, where sequence selections at each step are 
influenced by both local and global information.
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