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Abstract
This paper investigates the dynamics of a quasi-linear partial differential equation of fourth order 
characterized by bi-hyperbolic properties, incorporating dynamic boundary conditions. The study 
focuses on the interplay between the equation’s nonlinear source term, the boundary effects, and 
the initial energy. By applying the concavity method, we derive conditions that lead to the finite-
time blow-up phenomenon in solutions with non-negative initial energy. These findings highlight the 
impact of dynamic boundary conditions on the development of finite-time singularities in higher-order 
hyperbolic equations.
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1. Introduction

The study of partial differential equations (PDEs) involving higher-order derivatives is central to 
understanding complex physical and engineering phenomena such as elastic deformations, wave prop-
agation, and plate dynamics. Among these, fourth-order PDEs are particularly significant because of 
their mathematical complexity and their ability to model intricate systems. This paper examines a 
quasi-linear PDE of fourth-order, coupled with dynamic boundary conditions that introduce temporal 
interactions at the domain boundary.
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The equation under consideration is:
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where a  and t  are non-negative, x  lies within the domain Ω, and Ω refers to a bounded region with a 
smooth boundary, represented by � �= � .

The mixed hyperbolic-parabolic nature of the studied equation results from the interplay between 
second and fourth-order derivatives, which gives rise to unique dynamical properties. While the 
blow-up dynamics of solutions to second-order hyperbolic equations have been extensively explored in 
previous research (e.g., [1, 2]), the influence of higher-order derivatives and dynamic boundary condi-
tions remains less explored. This gap motivates the present study.

Vasconcellos et al. [3] established the existence and uniqueness of global solutions for the following 
problem when n ≤ 3:
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Here, ψ  is a nonnegative function that is continuously differentiable, and f  is a continuous, non-de-
creasing function that takes real values. A related study by Wu and Tsai [4] analyzed the blow-up 
characteristics and global existence of a second-order PDE with a dynamic boundary term, given by:

w H s w g w h wtt t� �( ) ( ) = ( ),� (2)

where H s( )  is a positive function that is locally Lipschitz continuous. Although their work focused on 
second-order systems, the inclusion of a fourth-order term ∆2u  in (1) introduces additional mathemat-
ical challenges and complexity. The existence and finite-time blow-up of solutions to equation (2) were 
studied in [5-8]. Piskin et al. [9] investigated the following equation for an extensible beam:

w w H w w w w w wtt t
p

t
q� � � � � �� �2 1 1( ) | | =| | 

with initial and boundary conditions. They demonstrated that the solution undergoes blow-up in 
finite time when the initial energy is positive. To analyze the finite-time blow-up in this context, we 
employ the concavity method, initially introduced by Levine [10]. This method uses the second-order 
derivative of an auxiliary functional to establish blow-up criteria. Building on Levine’s foundational 
work, Korpusov [11] extended the concavity method to accommodate equations with nonlinear source 
terms and dynamic boundary effects. Several studies have used this method, as mentioned in [12-16].

In this paper, we apply the Korpusov concavity method to (1), deriving the conditions that are suffi-
cient for the finite-time blow-up of solutions with non-negative initial energy. Our findings contribute 
to the growing body of work on the impact of boundary dynamics on solution behaviors and extend the 
understanding of blow-up phenomena in fourth-order hyperbolic equations.

The paper is structured as follows. Section 2 provides the necessary preliminaries, including key 
definitions and lemmas. Section 3 presents the main results, where the conditions required for the 
blow-up in finite time are derived and proved. Finally, Section 4 summarizes the findings and explores 
possible directions for future research.

2. Preliminary Definitions and Lemmas

This section provides some essential results, including lemmas and a theorem on local existence, that 
will be crucial for analyzing the problem. Throughout the paper  .  is used to represent the norms in 
L2( )Ω . For further details, see  [17,18].



Çalışkan Desova B and Polat M, Results in Nonlinear Anal. 8 (2025), 110–118. 112

The Sobolev space Wk p, ( )Ω  includes all functions u Lp� ( )�  for which the weak derivatives up to 
order k  are also elements of Lp( )Ω , where 1 <� �p . Additionally, the following function spaces are 
relevant for the analysis:
C T Hk([0, ); ( ))Ω : the set of continuous functions on [0, ]T  taking values in the Sobolev space Hk ( )Ω .
C T L L Tp([0, ); ( ) ( (0, ))2 1� �� �� : the space of functions integrable to the ( 1)p + -th power over 

�� (0, )T .
In order to establish the blow-up result, we employ the following lemma introduced by M.O. 

Korpusov, which extends the concavity method of Levine [10] to more complex systems.

Lemma 2.1 [11] Assume that ψ ( )t  is a function that is twice continuously differentiable and satisfies

�� � � �� � �� � � ��� � � � � � � �( ) 0, >1, 0, > 0.2 (3)
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The assumption on the function g  is stated as follows:
The function g , along with its antiderivative G v g s ds

v
( ) = ( )

0∫ , satisfies the following conditions:

g vg v G v v(0) = 0, ( ) 2(2 1) ( ), ,� � �� forall  (4)

where δ > 0  is a real constant.

Definition 2.2 Let v be a weak solution of Problem (1.1). The maximal existence time T *  is defined as 
follows:

T T v t T* = { > 0 : ( ) [0, ]}.sup exists on

Then, we have the following:
• if T * < ∞ ,then v  undergoes blow-up at a finite time, and T *  represents the blow-up time,
• if T * = ∞ , then v  a global solution.
Next, we state the local existence theorem of problem (1), whose proof can be found in [15].

Theorem 2.3 (Local existence theorem) Let v H0
2( )� �  and v L1

2( )� � . Under these conditions, a 
unique solution v to (1) exists, satisfying the properties:

v C T H v C T L L Tt
p� � � ��([0, ); ( )), ([0, ); ( ) ( (0, )).2 2 1� � �

Furthermore, one of the following conditions is satisfied:
• T = ∞ ,
•  � �� � �v t T, .
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3. Blow-Up Result

This section focuses on analyzing the existence of blow-up solutions for the initial-boundary value 
problem described in (1). To achieve this, we define the energy of the solution as:

E t v v v G vt( ) := 2 ( ),1 .2 2 2
     � � � � � � � �� � � (5)

The lemma below confirms that the energy functional E t( ) , as defined in (5), decreases or remains 
constant over time.

Lemma 3.1 Assuming condition (4) holds, the energy functional E t( )  satisfies E t E( ) (0)≤  for all t > 0.

Proof. To prove this, we start by multiplying equation (1) by �2�vt  in the L2( )Ω  space, resulting in the 
following equation:

� � � � �� � � �2 2 2 = 2 ( ) .2
� � � �

� � � � � � �v v dx v v dx v v dx g v v dxtt t t t t (6)

By utilizing Green’s formula and incorporating the boundary conditions, we arrive at the following 
expression for the time derivative of the energy functional:

d
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we can substitute into the previous expression, obtaining:

d
dt
E t a v dtt( ) = 2 ( ) .2� �� � (7)

From equation (7), it becomes evident that the energy functional’s rate of change is non-positive. 
As a result, E t( )  is a decreasing function of time, ensuring that the inequality E t E( ) (0)≤  holds for 
all t ≥ 0 .

Definition 3.2 A solution v of (1) is called blow-up if there exists a finite time T *  such that

t T

t
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In the following theorem, we prove global nonexistence with positive initial energy.

Theorem 3.3 Let v W m
0 0

1, ( )� � , v L1
2( )� �  and assume that condition (2.2) holds. If the initial condi-

tions satisfy the following inequality:

E(0) > 0,

2 . > 0,0 1�� � �v v

and
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Proof. We begin by differentiating the function ψ  defined in (8):

� �� � � � �� � �� � �( ) = 2 , 2 .
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Next, we differentiate again with respect to t . Using Green’s formula, we arrive at:
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Now, substituting this result into the expression for ψ ( )t , we get:
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Using the assumption (2.2) and the properties of the function f , we can estimate the term involving 
g v( )��  as follows:

� � � � � � � � �g v v G v( ), (2 1) ( ),1 .� � ��

Thus, we have the inequality:

�� � � � � � � � � � �� �( ) 2 2 2 (4 8 ) ( ),1 .2 2 2t v v v G vt     � � �

Simplifying further, we arrive at:
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Finally, from the previous result, it is established that the energy functional follows the evolution 
equation given by:
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We start with the inequality obtained from the previous result:
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energy. By multiplying both sides of this inequality by ψ ( )t , we derive:
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From the previous equation, we deduce the following:
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By applying the Cauchy-Schwarz inequality and simplifying the terms, we get:

(1 )[ ( )] 4(1 )[ ( ) (2
0

2 1/2
0

� � � � � � � � � � �� � � �t v v av d ds avt
t

t
t

t  

� � ttd ds av d2 1/2
1
2 2) 1

2
] .� �� �� (12)

For convenience, we now define the following notations:
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Using these definitions, and based on the previous inequality, we can conclude the following 
expression:
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Thus, we can rewrite the inequality as:

(1 )[ ( )] ( 1)4 ( ).2� � � �� � � �t C t (13)

Now, by combining the last two inequalities, we obtain the following:

�� � � � � �� � � � �( ) ( ) (1 )[ ( )] ( ).2t t t D t

This completes the proof of the intended result.

Remark 3.4 Comparing equation (3) with the earlier inequality, we can immediately identify the fol-
lowing relationships:
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Next, we fix v x0( )  and define v x v x1 0( ) = ( )λ , where λ > 0 is selected large enough to guarantee that 
the initial energy remains positive:
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Now, let λ =1 / 1/2a , where a > 0 . A series of transformations in (3.10) is equivalent to (3.11). This 
demonstrates that the conditions in Theorem 3.3 are consistent for sufficiently small a > 0 .

4. Conclusion

This research explored the blow-up behavior of quasi-linear wave equation characterized by bi-hy-
perbolic features, subject to dynamic boundary conditions. By employing the concavity method, as 
extended by Korpusov, we established sufficient criteria for blow-up in finite time under non-negative 
initial energy. Our results highlight the significant influence of nonlinear source terms and dynamic 
boundary effects on solution dynamics, offering a deeper understanding of finite-time singularities in 
higher-order hyperbolic equations.

These findings contribute to the broader study of blow-up phenomena by revealing how dynamic 
boundary conditions and initial energy interplay in driving singularity formation. Future research 
could focus on extending the analysis to more general boundary conditions or exploring the long-term 
behavior of solutions that do not undergo blow-up.
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