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Abstract

In this study, we employ the notion of C-class functions to develop new contraction mappings within
the context of neutrosophic fuzzy metric spaces. These contractions are utilized to establish fixed
point theorems applicable to complete neutrosophic fuzzy metric spaces, grounded in C-class func-
tions. Furthermore, we present a range of fixed point results pertinent to this particular framework.
An illustrative example is also provided to demonstrate our primary findings. Our results serve to
extend and generalize several existing outcomes in the literature.
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1. Introduction and preliminaries

In 1965, Zadeh [1] proposed a novel framework known as fuzzy sets, which allowed for the assignment
of varying degrees of membership to elements within a set. Initially, this concept faced skepticism
from the mathematical community; however, it eventually made significant contributions to a wide
array of scientific fields and practical applications. Despite its influence, fuzzy sets have not consis-
tently provided effective solutions to numerous problems over time. In 1986, Atanassov [2] introduced
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Intuitionistic Fuzzy Sets to tackle issues that remained unresolved within the fuzzy set framework.
His work emphasized both the membership and non-membership of elements in a set. Following this,
Smarandache [3] advanced the theory further by developing Neutrosophic Sets, which incorporate
the notions of indeterminacy alongside membership and non-membership. Neutrosophic sets have
demonstrated a diverse range of applications across various domains, as highlighted in the existing
literature and referenced works [4-7, 10].

Bipolar complex fuzzy soft sets and their practical applications were investigated in [8]. The alge-
braic structure of normal subgroups and cosets in the setting of (y,9)-fuzzy HX-subgroups was studied
in [9].

In recent years, fixed point theory has undergone substantial development through the introduc-
tion of various generalized metric spaces. Among these, MR-metric spaces [28—-31] have received par-
ticular attention as they provide a flexible and broad framework for the study of contraction-type
mappings. These theoretical advances have led to new fixed point results with important applications
to integral equations [30], neutron transport [32], uncertainty modeling [33], weighted graph analysis
[34], measure theory and convergence analysis [35], and deep learning [36].

Fixed point theory holds considerable importance in mathematics as it provides assurances regard-
ing the existence of solutions to a wide array of problems in diverse disciplines. A fixed point of a
function is defined as a point that the function maps to itself. Theorems related to fixed points, such
as Banach’s fixed-point theorem [11], play a vital role by confirming the existence of these points
under specific conditions. For example, Banach’s contraction principle, introduced by Stefan Banach
in 1922, establishes that every contraction mapping on a complete metric space possesses a unique
fixed point. This seminal result has inspired numerous generalizations and extensions across various
mathematical frameworks. Notable contributions in this direction include the study of Proinov-C,-
contractions in b-metric spaces [12], characterizations of completeness in quasi-metric and G-metric
spaces via w-distances [13], and tripled coincidence point theorems for weak ®-contractions [14].
Further developments have introduced novel distance spaces yielding new fixed-point theorems, with
applications to fractional differential equations [15, 16], alongside detailed discussions on b-metric,
metric, and G-metric spaces [17]. Furthermore, new contraction conditions in extended quasi b-metric
spaces were introduced in [18]. Common fixed point results in G-metric spaces via Q-distance were
established in [19], and generalized Q-distance mappings and related fixed point theorems were stud-
ied in [20]. For more generalizations and extensions of fixed point in various distance spaces we refer
the reader to [21-27].

2. Preliminary

In this context, the interval ]0—,1+[ is identified as the non-standard unit interval, where (1+)=1+¢
, with "1" signifying the standard component and ¢ representing the non-standard element. Similarly,
(0-)=0-¢, where "0" denotes the standard component. In this manuscript, we define R* as the
interval (0,0), R, as the interval [0,c), and I as the interval [0,1].

Definition 2.1 [1] A fuzzy set F associated with a universal set U is characterized by the notation
F={<a,u;(c)>0<u,(c)<1l,6 €Uy}. Here, u,(c) denotes the degree to which the element ¢ belongs to
the fuzzy set F.

Definition 2.2 [3] A neutrosophic set V associated with a universal set U is characterized as follows:
V =< g’(TN(G),IN(G)aFN(G)) > g € U’TN (G)7 IN(G)’ FN(g) 6]0_71 + [

In this framework, T (¢),Iy(s), and Fy(c) denote the degrees of membership pertaining to truth,
indeterminacy, and falsity for an element { within the neutrosophic set V, respectively. The notation
]0-, 1+[ indicates a non-standard unit interval.

Definition 2.3 [39] A neutrosophic fuzzy set B within a universal set U is characterized as follows:

B ={<x,(up(s),Tp(s, 1), (s, 1), F (g, 1)) >:6 €U, up(s) €[0,1],T5(5, 1), I 3 (5, 1), F (g, ) €]0-1+[ }
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In this framework, the membership degree u,(g) is represented by three distinct components:
the truth membership grade T;(g, 1), the indeterminacy membership grade (g, ), and the falsity
membership grade F(c,u). The notation ]0—,1+[ signifies a nonstandard unit interval.

The subsequent section recalls the definitions of triangular norms and t-norms, concepts that were
first introduced by Menger (see [38]). These definitions play a crucial role in the characterization of
neutrosophic metric spaces.

Definition 2.4 Consider an operation ¢:1x 1 — I. This operation is classified as continuous T-norm
(CTN) if it meets the following criteria: for any elements ¢,,0,,6,,0, € 1.

1. o01=0,,

2. If o, <0, and 6, <4,, than 0,08, <0,06,,

3. ¢ 1s continuous,

4. 0O 1is commutative and associate.

Definition 2.5 Consider an operation o : I x I — I . This operation is classified as continuous T co-norm
(CTC) if it meets the following criteria: for all elements c,,0,,6,,0, € 1.

1. o,¢0=0,,

2. If 0, <0, and §, £J,, than o, ¢, <o, J,,
3. e 1s continuous,

4. e is commutative and associate.

The definintion of neutrosophic metric spaces is defined by Kirigci and Simsek in 2020, and defined
as follows.

Definition 2.6 [38] A 6-tuple OV,A,C,D,0,e) is referred to as a neutrophic metric space (NMS) if the
set WV is a non-empty arbitrary collection, ¢ signifies a CTN, o indicates a CTC, and the elements A,C,
and D are fuzzy sets established on the Cartesian product W? x (0,x) . These components must satisfy
the following specific conditions for all elements ¢,w,c € W and for all positive real numbers y,p .

0<A(5,0,y)<1, 0<C(5,0,7) <1, 0<D(g,0,7) <1,
0<A(s,0,7)+C(g,0,7) + D(g,0,y) <3,
A(g,w,y)=1,for y >0 iff c =

A(s,0,7) = H(w,g,y) , for y >0

A(g,0,7)0A(w,c, p) < A(g,c,y + p)

A(c,0,): R" — I is continuous

lim,.A(G,0,7) =1

Ci,m,7)=0 iff c=w

9. C(s,0,7)=C(w,6,7),

10. C(g,w,y)eC(w,c,p)>C(g,c,y +p),

11. C(c,w,):R" — I is continuous

12, lim,..C(5,0,7)=0

13. D(g,w,y)=0,for y>0 iff s =w

14. D(s,0,y)=D(w,5,7),

15. D(g,w,y)* D(w,c,p) > S(g,c,y + p),

16. D(c,w,):R" — I is continuous

17 lim,..D(5,0,7)=0

18. Ify <0, then A(g,w,y) =0, C(c,0,7) = D(,0,y) =1

PN o W

The functions A(c,0,y), C(c,m,7), and D(c,w,y) represent the degrees of nearness, neutralness,
and non-nearness between the elements { and o in relation to the parameter y, respectively.

Recently, Ghosh et al. [41] presented the notion of neutrosophic fuzzy metric spaces and examined
various topological characteristics associated with this concept.
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Definition 2.7 [41] A 7-tuple OV, A,B,C,D,0,e) is defined as a Neutrophic Fuzzy Metric Space (NFMS)
if W represents an arbitrary set, ¢ denotes a CTN, e signifies a CTC, and the elements A,B,C, and
D are fuzzy sets on W? x(0,) . These elements must satisfy specific conditions for all ¢,w,ce W and

y,p>0.

PN o o

23.

0<A(5,0,7y)<1, 0<B(5,0,y)<1, 0<C(5,m,7) <1, 0<D(5,0,7) <1,
0<A(s,0,7) + B(s,0,7) + C(6,0,7) + D(g,0,y) < 4,
AGg,0,7)=1,iff c=w
A(g,0,7) = H(w,5,7),
A(g,0,7)0A(w,c, p) < A(g,c,y + p), for p,y >0
A(c,w,"): R" — I is continuous
lim;,_mA(g,CO, 7/) =1
B(g,0,y)=1,iff c=w
B(s,0,7) = B(w,s,y), for y >0
B(g,0,7)0B(w,c,p) < B(g,c,y + p),
B(s,w,"):R" -5 R" — [ is continuous
hmy%wB(g,wJ/) =1
C,0,7)=0,iff =
C(s,0,7) =C(w,s,7),
C(g,m,7) e C(o,c,p) 2 C(g,c,y +p),
C(s,w,):R" — I is continuous
lim, .C(5,@,7) =0
D(s,0,y)=0,iff ¢ =
D(s,0,y) = D(w,s,y),
D(s,0,7) e D(w,c,p) > S(g,c,y + p),
D(c,w,):R" — I is continuous
hmy—mD(an),V) =0
If y <0, then A(s,0,7)=B(s,0,7)=0, C(g,0,7)=D(g,0,y)=1

In this framework, A(c,m,y) signifies the certainty that the distance separating { and o is less than
y. Meanwhile, B(c,®,y) indicates the extent of nearness, C(c,w,y) refers to the level of neutrality,

and

D(c,m,7) represents the degree of non-proximity between { and ® in relation to y, respectively.

The convergence, Cauchy-ness, completeness were given as follows.

Definition 2.8 [41] Let (g,) be a sequence in a NFMS (OV,A,B,C,D,{,e). Then

1.

2.

(g,) converges to ¢ € W iff for a given ¢ €(0,1), y >0 there is n, € N such that for each n>n,
A(Qnagay) > 1_37 B(gn,g,y) >1 —-&, C(gnrgfy) < g, D(gn,g,}/) <e&.
l.e.,

limAG,,s,7) =1,1imB(s,,5,7) =1,1imC(s,,5,7) = 0,1imD(s,,5,7) = 0.

(g,) 1is called Cauchy iff for a given ¢ € (0,1),y >0 there is n, € N such that for each n,m >n,
A(G,6ms7)>1-¢,B(5,,6,,,7)>1-¢,C(5,,6,,7) <& D(5,,6,,7) <¢&.
le.,

lim A(5,,6,,.7) =1, lim B(,.5,,,7) =1,

n.m-—»ow n.m—o

lim C(,.5,,,7) =0, lim D(s,,s,,,7) =0.

n,m—on n,m—o
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3. W,A,B,C,D,0,e) is called complete if each Cauchy sequence is convergent to an element in W,

We now revisit the concept of a C-class function as defined by Ansari in [44], and further discussed
in [45, 46, 47].

Definition 2.9 [44] A collection of mappings G : ]Rg2 — R is called C-class function, if it is continuous
and the following conditions hold:

e G(3,t)<9 forall 3,teRy,
e G(9,t) =9 implies that either 3=0 or £=0.

Let C represent the collection of functions classified as C -class.

Example 2.10 [44] The following functions G:R;*> — R defined for all 9,t e R} by:
. G8,0=9-1 GOH=9=1=0
G(9,0)=n9% 0<n<l G9.0)=9=9=0

o G(9,t)= , re(0,+0), G(9,)=9=9=0or t=0,

9
1+t
t+c’
e G(9,t)=log, 17 ,c>1,G9,6)=9=9=0o0r t=0,
+

1+0b°

o Q(S,t)Zln[ j,e>b>1,§(9,t)=9:>9=0,

1
o G(3)=+D" —1,1>1,re(0,+0), G(Ht)=9=1t=0,
e G(9,t)=8log,,c,c>1,G(3t)=3= 3=0ort=0,

. g(.9,t)=.9-(1+‘9J(Lj, GO.H=9=1=0,

2+9 )\ 1+t
e G(9,t)=9B(3), B:R; —0,1) a continuous function, G(3,t)=9=9=0,
. GOH=9-——.60.0=9=1=0,
k+t
o G(*t)=9-nt), G(*t)=9=t=0, here h:R;—>R; is a continuous function such that
ht)=0<1t=0,
o G(9,t)=9n(3t), G(9,t)=9=9=0, here h:R;xR; —> R is a continuous function such that
h(t,9) <1 forall £,3>0,

. g(g,t):g—(ﬂjt, GO =9=1=0,
1+t

o GO =In(1+9"), G(9,5)=9=9=0,
o G3)=f(, G(9,t)=3=93=0, here f:R; >R, is a continuous function such that f(0)=0
and f(t) <t for ¢t >0,

o G(9,t)= ,reR", GG,1H)=9 =9=0.

1+9)

Definition 2.11 [43] A function y :Rj — R, is classified as an altering distance function if it fulfills
the subsequent criteria:

(1) The function vy is both non-decreasing and continuous,
(i1) The condition y(¢) =0 holds true if and only if £ =0.

We represent the collection of altering distance functions as ®.

Definition 2.12 Let ® represent the set of functions ¢ : Ry — Ry that fulfill the subsequent criteria:
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(1) The function ¢ is continuous;
(i) The condition ¢(¢) >0 holds for every ¢t >0, and ¢(0)>0.

Definition 2.13 [48] In this context, we define a real-valued function of three variables,on W? x (0,)
where W is any non-empty set, denoted as H, to possess the property (UC) if, for any sequences (g,,)
and (o,) in W, the following equality holds:

limlimH(s,,,®,,7) = limlimH(s,,®,,7).

}/4)}/0 n—oo n%ooy%yo

whenever the two limits are exist.

Throughout the remainder of this study, we will assume that each of the fuzzy sets A,B,C,D exhib-
its the UC property.

We will commence with several pertinent lemmas.

Lemma 2.14 [48]Let OV,A,B,C,D,0,e) be a NFMS. Then
1. A(c,m0,"),B(,»,):R" - R" is non-decreasing
2. C(g,0,") D(c,m,"):R" - R" is non-increasing
Lemma 2.15 [48] Let (W, A,B,C,D,0,e) be a NFMS, and let (g,) be a sequence such that for y >0

LAG,56,57) 2 A(G, 15641:7)B(6,56,:7) 2 A(S, 1,6,1,7)C(5,,6,57) < C(5, 156,1,7)D(5 ,,6,,7) @
< D(Gp—l?Qq—l’y)

and

ChmA(gn agn+1?7/) = 1311mB(gn anglay) = LlimC(Qn,g,Hl,}’) = OahmD(gn anglay) =0. (2)

n—o0 n—o n—o n—o

If (g,) is not Cauchy, then there exist an 1>¢ >0 and y >0 along with two subsequences (gn ) and
(gm ) derived from (g,), where (m,) such that one at least of the following holds.

llmA(gn 7gm 7}/) =1- &,
k—o k k
llmB(Qn ,Qm 77/):]-_87
k—o k k
HmC(s,, S, 1) = &,
HmD(g,, .Gy, 1) = &

3. Main Result

Definition 3.1 Let (W, A,B,C,D,0,¢) be a NFMS, o ®,, y €e® and GeC. A mapping f: W —->W
is called (¢,y,G)-neutrosophic fuzzy contraction ((¢, v,G)-NC) if for each ¢, €W and each y >0,
we have
1 1 1
Y(———F——-D=< G(v/(——l),w(——l)}
A(fs.fo,7) Ag,0,7) Ag,0,7)
1

1
— Gly(——D,p(— 1),
Y Blfefory P F ["’(B@, 7 B an )j

v (C(fs,fo,7) <Gy (C(5,0,7)),0(C(5,0,7))),
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and

v(D(fs,fo,7)) <Gy (D(5,0,7)),p(D(5,0,7))).

Theorem 3.2 Let OWW,A,B,C,D,0,e) be a complete NFMS, Suppose that there is (" € Z such that
f:F — F is (¢p,y,G)-neutrosophic contraction. Consequently, the function f possesses a unique fixed
point.

Proof. Let ¢, € F' represent an arbitrary point. We examine the Picard sequence (¢,) characterized
by the relation ¢, ., = f(g,) for all n>0. By Definition 3.1 we have

1 1 1 1
ly(————— 1) <G -1), -1 [fy(—————-1),
W(A(gn,gml,y) ) (W(A(gnpg,,,y) )(p(A(gn,pgn,y) )j W(A(gn,l,gn,y) ) &

1 1 1 1
Iy(—— <Gy 1) D | <y (1),

Ve Y ["’(B@n_l,gn,y) " B e )} Ve e Y

W (C(6,,6,,1,7) SGW(C(5, 1,6, 7):0(C(5,,1,6,,7))) SW(C(S, 1,6, ),

and
Y (D(G,:6,:1: 7N SGW(D(S, 1,6,:¥)),0(D(5, 1,6,,¥)) Sy (D(S, 1,6,,7))-
Thus,
1 1
Aparmn) Ay e
1 1
B($,56,.157) s B(,1:6,.7) b
C(6,56n157) <(C(5, 156,57 ))s
and

D(g,.6,.1,7) <(D(5,1:6,,7))-
So, we have

1. the sequence (A(gn,gnﬂ,y) :nelN ) 1s nondecreasing in [0,1], and hence, there is r, <1 such that r,
is the limit of this sequence.

2. the sequence (B(g,,5,.;,7):n € N) is nondecreasing in [0,1], and hence, there is r; <1 such that
r,1s the limit of this sequence.

3. the sequence (C(gn,gml,y) :nelN ) 1s nonincreasing in [0,1], and hence, there is 7, >0 such that
7. is the limit of this sequence.
and

4. the sequence (D(s,,G,.,,7) :n € N) is nonincreasing in [0,1], and hence, there is r;, >0 such that
r,,is the limit of this sequence..

Case 1: If r, >0, by taking the limit in Eq 3, we get

(2o o)
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which implies that v (i —1} =0, or, (,0(l —1} =0, thatis, r, =1. a contradiction. So r, =1. By the
Ta Ta

same way we conclude that r; =1,7, =0 and r, =0.
Now, we claim that (g,) 1 Cauchy. If not then by Lemma 2.15, then there exist an ¢ >0 and y >0

along with two subsequences (gnk) and (gmk) derived from (g,), where (m,) such that one of the
following holds

limA(,,5,,,7) =1—¢,

k—o

limB(G,,6,,,7) =1—¢,

k—o
%imC(gn,gm,y) =e,
%imD(gn,gm,y) =s.
Using Definition 3.1, we deduce that one of the following holds

1 1 1
Y- <Gl ~1),0( -
Alg,, +Sm, »7) AlSy, 156m, 157) AlSp, 15Sm, 157)

1) )

1 1 1
V(-1 <G| y( -1),0( =
B(Gnk Sy ,7) B(gnk_1 Sy 7) B(gnk_1 Sy 7)

D

v (Cls,, s6m 1) <GW(C(g, 1,6, 1:7)0(C(S, 1,6, 157));
or
l//(D(gnk Sm, 7)) < G(W(D(gnk_l ,gmk_l,y)),w(D(gnk_l,gmk_l,7))).

So, by taking the limit on ® = we get

1 1 1
W(:‘1]§G<‘”(:‘1)’¢[1_8‘1}’

1 1 . ..
-1|=0, or, ¢ —-1|=0, thatis, ¢ =0. a contradiction.
1-¢ 1-¢

which implies that y [
or

v(e) <G (s).0(s) <v(z),

which implies that y (g) =0, or, (p(g) =0, thatis, ¢ =0, a contradiction
Hence (g,) is a Cauchy sequence, thus, there is u € F' such that ¢, > u.
Definition 3.1 gives that

1
A(fu,6,.1,7)

1 1
1)< G(W(A(u,gn,y) _1)’(p(A(u,gn,7/) —l)j —>0asn— o,

w(

1
E——— R
Y B D° (‘”(

1),<p(;—1)j —>0asn— oo,

B(u.c,,y)  Buc,,7)
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w(C(fu,6,.1,7)) <G (v (Clu,s,,7)),0(Clu,g,,7)) > 0asn — o,
and
v (D(fu,6,,1,7)) < G(v(D(u,s,,7)),0(D(u,g,,7))) > 0as n — o,

Which implies that ¢,,, converges to fu, hence u = fu.
Let ve F with v=fv.If u = v, then from Definition 3.1, it follows that
1 1

_1 = _
ll/(A(u,v,y) ) W(A(fu,fv,y)

1 1
l)SG(w(A(u,U,y) _1)’(p(A(u,v,y) —1)}
1

1 1 1
— =  =y(———-1)<G 1), ~1) |,
Y Baon VT Bl oy VS (‘”B(u,v,y) " By )]

v (C(w,v,7)) =w(C(fu, fo,7)) < G (v (C(w,v,7)),0(C(w,v,7))),
and

y(D(w,v,7)) =y (D(fu, fo,y)) < G (v (D(w,v,7),p(D(w,v,7))),

1 1
Therefore, y(———-1)=0 — — 1)=0.Sou=v.
ereiore l//(A(u,v,y) ) . (p(A(u,v,y) ) “or

We will now present an illustrative example to demonstrate our primary finding.

Example 3.3 Let W =1 with the standard metric d(x,y)=|¢—w|, also, Let the t-norm and t-conorm

be defined as follows 0w =min{c,w}, ¢ ® w =max{c,w}. Additionally, let the fuzzy sets be defined as
follows:

+d(g,m) Y
A(g7w7y) = 7/—7 B(Q,wﬁ/) = 7 >
Yy +2d(s,0) y +d(s,m)

C(g’a)’y) :@71)(9@,7):@.

Then, the self map f: W — W, where f(g) =0.2¢ has a unique fixed point.

Proof. From [41], we have W, A,B,C,D,0,e) is a complete NFM spaces. Now, let The function G be
defined by G(s,t) =0.9.s, and let y(t) =t, p(t) =t . Then we have

1 _q=rt2dfs.fo)
A(fs,fo,y) y +d(fs,fo)
__d(fs,fo)
y +d(fs,fw)
02|¢-owl
- y+02[¢-ol

Since |¢ —w <1, then one can verify that

_02ls-0l _5q lc-ol
y+0.2|c-o] r+lg-ol

Thus, we have

vt 1 sG[w% 1),0(

_ _ ;_1)]
B(fs,fo,y) B(s,m,7) B(s,m,y) '
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The remainder can be demonstrated in an analogous manner.
By defining the function G(s,t) = ms, with the constant m restricted to the interval [0,1), we can
draw the following conclusion.

Corollary 3.4 Let OW,A,B,C,D,0,¢) be a complete NFMS, and let v € ®. Suppose that f: W —>W
satisfies the following for each ¢,w € W and each y >0, we have:

1

1
- 1)< — 1],
VCAe forr) )<m‘”[A<g,w,y> )

Ly Smw[;_l}
B(fs,fo,y) B(s,m,y)

v(C(fs,fo,7) <my(C(s,0,7)),

w(

and
v(D(fs,fo,7)) <my(D(g,,7)).

Consequently, the function f possesses a unique fixed point.
By defining the function G(s,t) =s—t, with the constant m restricted to the interval [0,1), we can
draw the following conclusion.

Corollary 3.5 Let OW,A,B,C,D,0,e) be a complete NFMS, and let v e ®, ¢ €®,. Suppose that
f: W — W satisfies the following for each ¢,w € W and each y >0, we have:

Lt ol )
A(fs,fo,7) A(s,0,7) A(s,0,7)

1 1 1
W(m1]W(m1J¢[m1]
v(C(fs,fa,y)) <y (C(5,0,7)) - o(C(g,m,7)),
and
v(D(fs,fo,7)) <y (D(5,0,7)) - o(D(g,0,7)).

Consequently, the function f possesses a unique fixed point.
By defining the function v (¢) = kt, with the constant % restricted to the interval (0,1) , and ¢(t) = Lt ,
where L >0, we can draw the following conclusion.

Corollary 3.6 Let (W,A,B,C,D,0,¢) be a complete NFMS. Suppose that f: YW —> W satisfies the fol-
lowing for each ¢, € W and each y >0, we have:

v brerratl i e
-1< |- —1],
A(fs,fo,y) Ag,0,7) k\ A(s,0,7)

YT e i)
~1< - 1,
B(fs,fo,7) B(s,w,y) k\ B(s,0,y)

C(fg,fﬁ),ﬂ/) < C(g’w7y) —%C(G,@J),
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and
L

Consequently, the function f possesses a unique fixed point.

Remark 3.7 By defining the function g(s,t)(? iﬁ(s), B:R; —0,1) a continuous function with the
property B(t,) >1=1t, — 0 for each sequence * "’ in R, G(s,t) =s=s=0, we can draw the following
conclusion. Definition 3.5 of [48] and so Theorem 3.6 [48].

Conclusion

Fixed-point theory encompasses a variety of theorems that examine the behavior of transformations
applied to points within a specific set, ensuring the existence of at least one invariant point. These
theorems are crucial for demonstrating the existence of solutions to numerous equations and systems
across different mathematical disciplines. A prominent example is Banach’s Fixed Point Theorem,
which 1s fundamental in analysis and states that any contraction mapping from a complete metric
space to itself has a unique fixed point. Such theorems are vital in various fields, including differen-
tial equations, economics, and computer science, as they aid in identifying equilibria and solutions.
In essence, fixed-point theorems are essential tools in both theoretical and applied mathematics, pro-
viding foundational insights and effective methods for tackling complex problems by confirming the
existence and, in some instances, the uniqueness of solutions.

In this research, we utilized the concept of C-class functions to create new contraction mappings
within the framework of neutrosophic fuzzy metric spaces. These contractions are employed to derive
fixed point theorems relevant to complete neutrosophic fuzzy metric spaces, based on C-class func-
tions. Additionally, we presented a series of fixed point results that are significant to this specific con-
text. An example is included to illustrate our main findings. Our results aim to extend and generalize
several existing outcomes found in the literature.
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