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Abstract
In this study, we employ the notion of C-class functions to develop new contraction mappings within 
the context of neutrosophic fuzzy metric spaces. These contractions are utilized to establish fixed 
point theorems applicable to complete neutrosophic fuzzy metric spaces, grounded in C-class func-
tions. Furthermore, we present a range of fixed point results pertinent to this particular framework. 
An illustrative example is also provided to demonstrate our primary findings. Our results serve to 
extend and generalize several existing outcomes in the literature. 
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1. Introduction and preliminaries

In 1965, Zadeh [1] proposed a novel framework known as fuzzy sets, which allowed for the assignment 
of varying degrees of membership to elements within a set. Initially, this concept faced skepticism 
from the mathematical community; however, it eventually made significant contributions to a wide 
array of scientific fields and practical applications. Despite its influence, fuzzy sets have not consis-
tently provided effective solutions to numerous problems over time. In 1986, Atanassov [2] introduced 
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Intuitionistic Fuzzy Sets to tackle issues that remained unresolved within the fuzzy set framework. 
His work emphasized both the membership and non-membership of elements in a set. Following this, 
Smarandache [3] advanced the theory further by developing Neutrosophic Sets, which incorporate 
the notions of indeterminacy alongside membership and non-membership. Neutrosophic sets have 
demonstrated a diverse range of applications across various domains, as highlighted in the existing 
literature and referenced works [4–7, 10]. 

Bipolar complex fuzzy soft sets and their practical applications were investigated in [8]. The alge-
braic structure of normal subgroups and cosets in the setting of (γ,ϑ)-fuzzy HX-subgroups was studied 
in [9].

In recent years, fixed point theory has undergone substantial development through the introduc-
tion of various generalized metric spaces. Among these, MR-metric spaces [28–31] have received par-
ticular attention as they provide a flexible and broad framework for the study of contraction-type 
mappings. These theoretical advances have led to new fixed point results with important applications 
to integral equations [30], neutron transport [32], uncertainty modeling [33], weighted graph analysis 
[34], measure theory and convergence analysis [35], and deep learning [36].

Fixed point theory holds considerable importance in mathematics as it provides assurances regard-
ing the existence of solutions to a wide array of problems in diverse disciplines. A fixed point of a 
function is defined as a point that the function maps to itself. Theorems related to fixed points, such 
as Banach’s fixed-point theorem [11], play a vital role by confirming the existence of these points 
under specific conditions. For example, Banach’s contraction principle, introduced by Stefan Banach 
in 1922, establishes that every contraction mapping on a complete metric space possesses a unique 
fixed point. This seminal result has inspired numerous generalizations and extensions across various 
mathematical frameworks. Notable contributions in this direction include the study of Proinov–Cb-
contractions in b-metric spaces [12], characterizations of completeness in quasi-metric and G-metric 
spaces via ω-distances [13], and tripled coincidence point theorems for weak Φ-contractions [14]. 
Further developments have introduced novel distance spaces yielding new fixed-point theorems, with 
applications to fractional differential equations [15, 16], alongside detailed discussions on b-metric, 
metric, and G-metric spaces [17]. Furthermore, new contraction conditions in extended quasi b-metric 
spaces were introduced in [18]. Common fixed point results in G-metric spaces via Ω-distance were 
established in [19], and generalized Ω-distance mappings and related fixed point theorems were stud-
ied in [20]. For more generalizations and extensions of fixed point in various distance spaces we refer 
the reader to [21–27].

2. Preliminary

In this context, the interval ]0 ,1 [� �  is identified as the non-standard unit interval, where (1 ) =1� � �
, with "1" signifying the standard component and ε representing the non-standard element. Similarly, 
(0 ) = 0� � � , where "0" denotes the standard component. In this manuscript, we define R+  as the 
interval (0, )∞ , R0

+  as the interval [0, )∞ , and I as the interval [0,1].

Definition 2.1 [1] A fuzzy set F associated with a universal set U is characterized by the notation 
F a UF F= {< , ( ) >: 0 ( ) 1, }� � � � �� � � . Here, � �F ( )  denotes the degree to which the element ζ belongs to 
the fuzzy set F. 

Definition 2.2 [3] A neutrosophic set V associated with a universal set U is characterized as follows: 

V T I F U T I FN N N N N N=< ,( ( ), ( ), ( )) >: , ( ), ( ), ( ) ]0 ,1 [.� � � � � � � �� � � �

In this framework, T IN N( ), ( )ς ς , and FN ( )ς  denote the degrees of membership pertaining to truth, 
indeterminacy, and falsity for an element ζ within the neutrosophic set V, respectively. The notation 
]0-, 1+[ indicates a non-standard unit interval. 

Definition 2.3 [39] A neutrosophic fuzzy set B within a universal set U is characterized as follows: 

B x T I F U TB B B B B= {< ,( ( ), ( , ), ( , ), ( , )) >: , ( ) [0,1], (� � � � � � � � � � � �� � ,, ), ( , ), ( , ) ]0 ,1 [ }� � � � �I FB � � �
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In this framework, the membership degree � �B ( )  is represented by three distinct components: 
the truth membership grade TB ( , )� � , the indeterminacy membership grade IB ( , )� � , and the falsity 
membership grade F ( , )� � . The notation ]0 ,1 [� �  signifies a nonstandard unit interval.

The subsequent section recalls the definitions of triangular norms and t-norms, concepts that were 
first introduced by Menger (see [38]). These definitions play a crucial role in the characterization of 
neutrosophic metric spaces.

Definition 2.4 Consider an operation � � �: I I I . This operation is classified as continuous T-norm 
(CTN) if it meets the following criteria: for any elements � � � �1 2 1 2, , , � I .

1.	 � �1 11 =� ,
2.	 If � �1 2�  and � �1 2� , than � � � �1 1 2 2� � � ,
3.	 ◊ is continuous,
4.	 ◊ is commutative and associate.

Definition 2.5 Consider an operation � � �: I I I . This operation is classified as continuous T co-norm 
(CTC) if it meets the following criteria: for all elements � � � �1 2 1 2, , , � I .

1.	 � �1 10 =� ,
2.	 If � �1 2�  and � �1 2� , than � � � �1 1 2 2� � � ,
3.	 ● is continuous,
4.	 ● is commutative and associate. 

The definintion of neutrosophic metric spaces is defined by Kirişci and Şimşek in 2020, and defined 
as follows.

Definition 2.6 [38] A 6-tuple ( , , , , , )W A C D � �  is referred to as a neutrophic metric space (NMS) if the 
set W  is a non-empty arbitrary collection, ◊ signifies a CTN, ● indicates a CTC, and the elements A,C, 
and D are fuzzy sets established on the Cartesian product W2 (0, )� � . These components must satisfy 
the following specific conditions for all elements � �, ,c�W  and for all positive real numbers � �, .

1.	 0 ( , , ) 1� �A � � � , 0 ( , , ) 1� �C � � � , 0 ( , , ) 1� �D � � � ,
2.	 0 ( , , ) ( , , ) ( , , ) 3� � � �A C D� � � � � � � � � ,
3.	 A( , , ) =1� � � , for γ > 0  iff � �=
4.	 A H( , , ) = ( , , )� � � � � � , for γ > 0
5.	 A A c A c( , , ) ( , , ) ( , , )� � � � � � � �� � �
6.	 A I( , , ) :� � � ��R  is continuous
7.	 � � � ���lim A( , , ) =1
8.	 C( , , ) = 0� � �  iff � �=
9.	 C C( , , ) = ( , , )� � � � � � ,
10.	 C C c C c( , , ) ( , , ) ( , , )� � � � � � � �� � � ,
11.	 C I( , , ) :� � � ��R  is continuous
12.	 � � � ���lim C( , , ) = 0
13.	 D( , , ) = 0� � � , for γ > 0  iff � �=
14.	 D D( , , ) = ( , , )� � � � � � ,
15.	 D D c S c( , , ) ( , , ) ( , , )� � � � � � � �� � � ,
16.	 D I( , , ) :� � � ��R  is continuous
17.	 � � � ���lim D( , , ) = 0
18.	 If � � 0, then A( , , ) = 0� � � , C D( , , ) = ( , , ) =1� � � � � �  

The functions A( , , )� � � , C( , , )� � � , and D( , , )� � �  represent the degrees of nearness, neutralness, 
and non-nearness between the elements ζ and ω in relation to the parameter γ, respectively.

Recently, Ghosh et al. [41] presented the notion of neutrosophic fuzzy metric spaces and examined 
various topological characteristics associated with this concept.
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Definition 2.7 [41] A 7-tuple ( , , , , , , )W A B C D � �  is defined as a Neutrophic Fuzzy Metric Space (NFMS) 
if W  represents an arbitrary set, ◊ denotes a CTN, ● signifies a CTC, and the elements A,B,C, and 
D are fuzzy sets on W2 (0, )� � . These elements must satisfy specific conditions for all � �, ,c�W  and 
� �, > 0 .

1.	 0 ( , , ) 1� �A � � � , 0 ( , , ) 1� �B � � � , 0 ( , , ) 1� �C � � � , 0 ( , , ) 1� �D � � � ,
2.	 0 ( , , ) ( , , ) ( , , ) ( , , ) 4� � � � �A B C D� � � � � � � � � � � � ,
3.	 A( , , ) =1� � � , iff � �=
4.	 A H( , , ) = ( , , )� � � � � � ,
5.	 A A c A c( , , ) ( , , ) ( , , )� � � � � � � �� � � , for � �, > 0
6.	 A I( , , ) :� � � ��R  is continuous
7.	 � � � ���lim A( , , ) =1
8.	 B( , , ) =1� � � , iff � �=
9.	 B B( , , ) = ( , , )� � � � � � , for γ > 0
10.	 B B c B c( , , ) ( , , ) ( , , )� � � � � � � �� � � ,
11.	 B I( , , ) :� � � � �� �R R  is continuous
12.	 � � � ���lim B( , , ) =1
13.	 C( , , ) = 0� � � , iff � �=
14.	 C C( , , ) = ( , , )� � � � � � ,
15.	 C C c C c( , , ) ( , , ) ( , , )� � � � � � � �� � � ,
16.	 C I( , , ) :� � � ��R  is continuous
17.	 � � � ���lim C( , , ) = 0
18.	 D( , , ) = 0� � � , iff � �=
19.	 D D( , , ) = ( , , )� � � � � � ,
20.	 D D c S c( , , ) ( , , ) ( , , )� � � � � � � �� � � ,
21.	 D I( , , ) :� � � ��R  is continuous
22.	 � � � ���lim D( , , ) = 0
23.	 If � � 0 , then A B( , , ) = ( , , ) = 0� � � � � � , C D( , , ) = ( , , ) =1� � � � � �  

In this framework, A( , , )� � �  signifies the certainty that the distance separating ζ and ω is less than 
γ. Meanwhile, B( , , )� � �  indicates the extent of nearness, C( , , )� � �  refers to the level of neutrality, 
and D( , , )� � �  represents the degree of non-proximity between ζ and ω in relation to γ, respectively.

The convergence, Cauchy-ness, completeness were given as follows.

Definition 2.8 [41] Let ( )ςn  be a sequence in a NFMS ( , , , , , , )W A B C D � � . Then

1.	 ( )ςn  converges to � �W  iff for a given � �� (0,1), > 0  there is n N0 ∈  such that for each n n≥ 0  
A B C Dn n n n( , , ) >1 , ( , , ) >1 , ( , , ) < , ( , , ) < .� � � � � � � � � � � � � � � �� �

i.e., 

n
n

n
n

n
n

n
A B C

�� �� �� ��
lim lim lim l( , , ) =1, ( , , ) =1, ( , , ) = 0,� � � � � � � � � iimD n( , , ) = 0.� � �

2.	 ( )ςn  is called Cauchy iff for a given � �� (0,1), > 0  there is n0 ∈N  such that for each n m n, 0≥  
A B C Dn m n m n m n m( , , ) >1 , ( , , ) >1 , ( , , ) < , ( , , ) < .� � � � � � � � � � � � � � � �� �

i.e., 

n m
n m

n m
n mA B

. .
( , , ) =1, ( , , ) =1,

�� ��
lim lim� � � � � �

n m
n m

n m
n mC D

, ,
( , , ) = 0, ( , , ) = 0.

�� ��
lim lim� � � � � �



Bataihah A et al, Results in Nonlinear Anal. 8 (2025), 97–108.� 101

3.	 ( , , , , , , )W A B C D � �  is called complete if each Cauchy sequence is convergent to an element in W . 

We now revisit the concept of a C-class function as defined by Ansari in [44], and further discussed 
in [45, 46, 47].

Definition 2.9 [44] A collection of mappings G : 0
2R R� �  is called C-class function, if it is continuous 

and the following conditions hold:

•	 G( , )� �t �  for all �, 0t� �R ,
•	 G( , ) =ϑ ϑt  implies that either ϑ = 0  or t = 0 . 

Let C  represent the collection of functions classified as C -class.

Example 2.10 [44] The following functions G : 0
2R R� �  defined for all �, 0t� �R  by:

•	 G( , ) =� �t t� , G( , ) = = 0� �t t� ,
•	 G( , ) =� ��t , 0 < <1η , G( , ) = = 0� � �t � ,

•	 G( , ) =
(1 )

�
�t
t r�

, r� ��(0, ) , G( , ) = = 0� � �t �  or t = 0 ,

•	 G( , ) =
1

�
�

t t c
tclog �

�

�

�
��

�

�
�� , c >1 , G( , ) = = 0� � �t �  or t = 0 ,

•	 G( , ) = 1
2

�
�

t bln ��

�
��

�

�
�� , e b> >1 , G( , ) = = 0� � �t � ,

•	 G( , ) = ( )
1

1� �t l ltr� �� , l r>1, (0, )� �� , G( , ) = = 0� �t t� ,
•	 G( , ) =� �t ct c�log , c >1 , G( , ) =� �t �  ϑ = 0  or t = 0 ,

•	 G( , ) = 1
2 1

� �
�
�

t t
t

�
�
�

�

�
�

�

�
� �
�

�
�

�

�
� , G( , ) = = 0� �t t� ,

•	 G( , ) = ( )� �� �t , � : 0,1)0R
� �  a continuous function, G( , ) = = 0� � �t � ,

•	 G G( , ) = , ( , ) = = 0� � � �t t
k t

t t�
�

� ,

•	 G( , ) = ( )� �t h t� , G( , ) = = 0,� �t t�  here h : 0 0R R� ��  is a continuous function such that 
h t t( ) = 0 = 0⇔ ,

•	 G( , ) = ( , )ϑ ϑ ϑt h t , G( , ) = = 0,� � �t �  here h : 0 0 0R R R� � �� �  is a continuous function such that 
h t( , ) <1ϑ  for all t, > 0ϑ ,

•	 G( , ) = 2
1

� �t t
t

t�
�
�

�

�
�

�

�
� , G( , ) = = 0� �t t� ,

•	 G( , ) = (1 )� �t nn ln � , G( , ) = = 0� � �t � ,
•	 G( , ) = ( )ϑ ϑt f , G( , ) = = 0,� � �t �  here f : 0 0R R� ��  is a continuous function such that f (0) = 0  

and f t t( ) <  for t > 0,

•	 G( , ) =
(1 )

�
�
�

t r�
, r� �R , G( , ) =ϑ ϑt  �� = 0 . 

Definition 2.11 [43] A function � : 0 0R R� ��  is classified as an altering distance function if it fulfills 
the subsequent criteria:

(i)	The function ψ is both non-decreasing and continuous,
(ii)	The condition ψ ( ) = 0t  holds true if and only if t = 0 .

We represent the collection of altering distance functions as Φ.

Definition 2.12 Let Φu represent the set of functions � : 0 0R R� ��  that fulfill the subsequent criteria:
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(i) The function φ is continuous;
(ii) The condition ϕ( ) > 0t  holds for every t > 0 , and �(0) 0� . 

Definition 2.13 [48] In this context, we define a real-valued function of three variables,on W2 (0, )� �  
where W  is any non-empty set, denoted as H , to possess the property (UC) if, for any sequences ( )ςn  
and ( )ωn  in W , the following equality holds:

� � � �
� � � � � �

� �� �� �0 0
( , , ) = ( , , ).lim lim lim lim

n
n n

n
n nH H

whenever the two limits are exist. 
Throughout the remainder of this study, we will assume that each of the fuzzy sets A,B,C,D exhib-

its the UC property.
We will commence with several pertinent lemmas.

Lemma 2.14 [48]Let ( , , , , , , )W A B C D � �  be a NFMS. Then

1.	 A B( , , ), ( , , ) :� � � �� � �� �R R  is non-decreasing
2.	 C D( , , ) ( , , ) :� � � �� � �� �R R  is non-increasing

Lemma 2.15 [48] Let ( , , , , , , )W A B C D � �  be a NFMS, and let ( )ςn  be a sequence such that for γ > 0  

lA A B A Cp q p q p q p q p q( , , ) ( , , ) ( , , ) ( , , ) ( ,1 1 1 1� � � � � � � � � � � � � �� �� � � � ,, ) ( , , ) ( , , )
( , , )

1 1

1 1

� � � � � � �

� � �

�

�
� �

� �

C D
D

p q p q

p q
(1)

and 
c A B C
n

n n
n

n n
n

n n
��

�
��

�
��

�lim lim lim( , , ) =1, ( , , ) =1, ( ,1 1 1� � � � � � � � ,, ) = 0, ( , , ) = 0.1� � � �
n

n nD
��

�lim (2)

If ( )ςn  is not Cauchy, then there exist an 1 > > 0ε  and γ > 0  along with two subsequences ( )ςnk  and 
( )ςmk  derived from ( )ςn , where ( )mk  such that one at least of the following holds.

k
nk mk

A
��

�lim ( , , ) =1 ,� � � �

k
nk mk

B
��

�lim ( , , ) =1 ,� � � �

k
nk mk

C
��
lim ( , , ) = ,� � � �

k
nk mk

D
��
lim ( , , ) = .� � � �

3. Main Result

Definition 3.1 Let ( , , , , , , )W A B C D � �  be a NFMS, � �  Φu , � ��  and G C∈ . A mapping f :W W→  
is called ( , , )� � G -neutrosophic fuzzy contraction ((φ, ψ , )G -NC) if for each � �, �W  and each γ > 0 , 
we have

�
� � �

�
� � �

�
� � �

( 1
( , , )

1) ( 1
( , , )

1), ( 1
( , , )

1) ,
A f f

G
A A

� � � �
�

�
�

�

�
�

�
� � �

�
� � �

�
� � �

( 1
( , , )

1) ( 1
( , , )

1), ( 1
( , , )

1) ,
B f f

G
B B

� � � �
�

�
�

�

�
�

� � � � � � � � � � � �( ( , , )) ( ( ( , , )), ( ( , , ))),C f f G C C�
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and 
� � � � � � � � � � � �( ( , , )) ( ( ( , , )), ( ( , , ))).D f f G D D�

Theorem 3.2 Let ( , , , , , , )W A B C D � �  be a complete NFMS, Suppose that there is � � �Z  such that 
f F F: →  is ( , , )� � G -neutrosophic contraction. Consequently, the function f possesses a unique fixed 
point. 

Proof. Let �0 �F  represent an arbitrary point. We examine the Picard sequence ( )ςn  characterized 
by the relation � �n nf�1 = ( )  for all n ≥ 0 . By Definition 3.1 we have

ll
A

G
A An n n n n n

�
� � �

�
� � �

�
� � �

( 1
( , , )

1) ( 1
( , , )

1), ( 1
( , , )

1
1 1 1� � �

� � � � )) ( 1
( , , )

1),
1

�

�
�

�

�
� � �

�

�
� � �A n n

(3)

ll
B

G
B Bn n n n n n

�
� � �

�
� � �

�
� � �

( 1
( , , )

1) ( 1
( , , )

1), ( 1
( , , )

1
1 1 1� � �

� � � � )) ( 1
( , , )

1),
1

�

�
�

�

�
� � �

�

�
� � �B n n

� � � � � � � � � � � � � �( ( , , )) ( ( ( , , )), ( ( , , ))) ( (1 1 1C G C C Cn n n n n n n� � � �� � 11, , )),� �n

and 
� � � � � � � � � � � � � �( ( , , )) ( ( ( , , )), ( ( , , ))) ( (1 1 1D G D D Dn n n n n n n� � � �� � 11, , )).� �n

Thus,
1

( , , )
1 < 1

( , , )
1,

1 1A An n n n� � � � � �� �

� �

1
( , , )

1 < 1
( , , )

1,
1 1B Bn n n n� � � � � �� �

� �

C Cn n n n( , , ) < ( ( , , )),1 1� � � � � �� �

and 
D Dn n n n( , , ) < ( ( , , )).1 1� � � � � �� �

So, we have
1.	 the sequence A n Nn n( , , ) :1� � �� �� �  is nondecreasing in [0,1], and hence, there is rA ≤1  such that rA 

is the limit of this sequence.
2.	 the sequence B n Nn n( , , ) :1� � �� �� �  is nondecreasing in [0,1], and hence, there is rB ≤1  such that 

rB is the limit of this sequence.
3.	 the sequence C n Nn n( , , ) :1� � �� �� �  is nonincreasing in [0,1], and hence, there is rC ≥ 0  such that 

rC is the limit of this sequence.
and

4.	 the sequence D n Nn n( , , ) :1� � �� �� �  is nonincreasing in [0,1], and hence, there is rD ≥ 0  such that 
rD is the limit of this sequence.. 

Case 1: If rA > 0 , by taking the limit in Eq 3, we get
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1 1 1 1 , 1 1 1 1
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G
r r rA A A A

�
�

�
�

�

�
� � �

�

�
�

�

�
� �

�

�
�

�

�
�

�

�
��

�

�
�� � �

�

�
�

�

��
� ,



Bataihah A et al, Results in Nonlinear Anal. 8 (2025), 97–108.� 104

which implies that � 1 1 = 0,
rA

�
�

�
�

�

�
�  or, � 1 1 = 0

rA
�

�

�
�

�

�
� , that is, rA =1 . a contradiction. So rA =1 . By the 

same way we conclude that r rB C=1, = 0  and rD = 0.
Now, we claim that ( )ςn  i Cauchy. If not then by Lemma 2.15, then there exist an ε > 0  and γ > 0  

along with two subsequences ( )ςnk  and ( )ςmk  derived from ( )ςn , where ( )mk  such that one of the 
following holds

k
n mA

��
�lim ( , , ) =1 ,� � � �

k
n mB

��
�lim ( , , ) =1 ,� � � �

k
n mC

��
lim ( , , ) = ,� � � �

k
n mD

��
lim ( , , ) = .� � � �

Using Definition 3.1, we deduce that one of the following holds

�
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( , , )

1), ( 1
( ,1 1 1A
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� � � � � � � � � � � �( ( , , )) ( ( ( , , )), ( ( , , )))1 1 1 1C G C Cnk mk nk mk nk mk
� � � � � ,,

or
� � � � � � � � � � � �( ( , , )) ( ( ( , , )), ( ( , , )))1 1 1 1D G D Dnk mk nk mk nk mk
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So, by taking the limit on k �� , we get
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which implies that �
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1

1
1 = 0,
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�
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�
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�
�

�

�
� , that is, ε = 0 . a contradiction.

or 

� � � � � � � �� � � � � � � � � �G( , ) ,

which implies that � �� � = 0,  or, � �� � = 0 , that is, ε = 0 , a contradiction
Hence ( )ςn  is a Cauchy sequence, thus, there is u F∈  such that �n u� .
Definition 3.1 gives that
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� � � � � � � � �( ( , , )) ( ( , , )), ( ( , , )) 0 ,1C fu G C u C u nn n n� � � � � ��as

and

� � � � � � � � �( ( , , )) ( ( , , )), ( ( , , )) 0 ,1D fu G D u D u nn n n� � � � � ��as

Which implies that �n�1  converges to fu, hence u fu= .
Let v F∈  with v fv= . If u v= , then from Definition 3.1, it follows that
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and

� � � � � � � �( ( , , )) = ( ( , , )) ( ( , , )), ( ( , , )) ,D u v D fu fv G D u v D u v� � �

Therefore, �
�

( 1
( , , )

1) = 0
A u v

�  or �
�

( 1
( , , )

1) = 0
A u v

� . So u v= .

We will now present an illustrative example to demonstrate our primary finding.

Example 3.3 Let W = I  with the standard metric d x y( , ) =| |� �� , also, Let the t-norm and t-conorm 
be defined as follows � � � �� = { , }min , � � � �� = { , }max . Additionally, let the fuzzy sets be defined as 
follows: 

A d
d

B
d

( , , ) = ( , )
2 ( , )

, ( , , ) =
( , )

,� � �
� � �
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� �

C d D d( , , ) = ( , ) , ( , , ) = ( , ) .� � �
� �
�

� � �
� �
�

Then, the self map f :W W→ , where f ( ) = 0.2ς ς  has a unique fixed point.

Proof. From [41], we have ( , , , , , , )W A B C D � �  is a complete NFM spaces. Now, let The function G be 
defined by G s t s( , ) = 0.9. , and let � �( ) = , ( ) =t t t t . Then we have
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The remainder can be demonstrated in an analogous manner.
By defining the function G s t ms( , ) = , with the constant m restricted to the interval [0,1) , we can 

draw the following conclusion.

Corollary 3.4 Let ( , , , , , , )W A B C D � �  be a complete NFMS, and let � �� . Suppose that f :W W→  
satisfies the following for each � �, �W  and each γ > 0 , we have:
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Consequently, the function f possesses a unique fixed point.
By defining the function G s t s t( , ) = − , with the constant m restricted to the interval [0,1) , we can 

draw the following conclusion.

Corollary 3.5 Let ( , , , , , , )W A B C D � �  be a complete NFMS, and let � �� , � ��u . Suppose that 
f :W W→  satisfies the following for each � �, �W  and each γ > 0 , we have:
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Consequently, the function f possesses a unique fixed point. 
By defining the function ψ ( ) =t kt , with the constant k restricted to the interval (0,1) , and ϕ( ) =t Lt ,  

where L > 0 , we can draw the following conclusion.

Corollary 3.6 Let ( , , , , , , )W A B C D � �  be a complete NFMS. Suppose that f :W W→  satisfies the fol-
lowing for each � �, �W  and each γ > 0 , we have:
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and 

D f f D L
k
D( , , ) ( , , ) ( , , ).� � � � � � � � �� �

Consequently, the function f possesses a unique fixed point. 

Remark 3.7 By defining the function G( , ) = ( )s t s sβ , � : 0,1)0R
� �  a continuous function with the 

property � ( ) 1 0t tn n� � �  for each sequence ( )tn  in R0
+ , G( , ) = = 0s t s s⇒ , we can draw the following 

conclusion. Definition 3.5 of [48] and so Theorem 3.6 [48]. 

Conclusion

Fixed-point theory encompasses a variety of theorems that examine the behavior of transformations 
applied to points within a specific set, ensuring the existence of at least one invariant point. These 
theorems are crucial for demonstrating the existence of solutions to numerous equations and systems 
across different mathematical disciplines. A prominent example is Banach’s Fixed Point Theorem, 
which is fundamental in analysis and states that any contraction mapping from a complete metric 
space to itself has a unique fixed point. Such theorems are vital in various fields, including differen-
tial equations, economics, and computer science, as they aid in identifying equilibria and solutions. 
In essence, fixed-point theorems are essential tools in both theoretical and applied mathematics, pro-
viding foundational insights and effective methods for tackling complex problems by confirming the 
existence and, in some instances, the uniqueness of solutions.

In this research, we utilized the concept of C-class functions to create new contraction mappings 
within the framework of neutrosophic fuzzy metric spaces. These contractions are employed to derive 
fixed point theorems relevant to complete neutrosophic fuzzy metric spaces, based on C-class func-
tions. Additionally, we presented a series of fixed point results that are significant to this specific con-
text. An example is included to illustrate our main findings. Our results aim to extend and generalize 
several existing outcomes found in the literature.
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