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Optimization problems are divided into constrained optimization problems and unconstrained opti-
mization problems. Most real-world problems fall into constrained optimization problems involving 
linear or non-linear constraints. To overcome these obstacles, numerical optimization is resorted to, 
which includes several methods and techniques to find the optimal solution. One effective technique 
for solving optimization problems is the projection method, and We used a new projection technique 
to solve large non-linear monotonic equations with convex constraints. Large-scale monotonic non- 
linear equations can be solved using the enhanced method., which also has the advantage of requiring 
less memory. It is shown that under the correct conditions, the proposed method is globally conver-
gent, and numerical results support its effectiveness.
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1. Introduction

One effective technique for resolving constrained optimization issues is the projection approach. The 
projection approach modifies an unconstrained optimization algorithm subject to certain simplifica-
tions to address confined optimization problems since most constrained problems cannot be solved 
using a planned algorithm used to solve unconstrained problems. Many types of equations have been 
solved in this method, including linear, non-linear, monotone and convex equations. The Monotone 
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equations have been used in many situations in real life Over the past ten years, The benefit of the 
Newton method is a reduction in the time between iterations and the Set of equation solutions. The 
entire series obtained converges to an equational solution despite the limited number of solutions. 
Numerous attempts have been made to modify and hybridize previous methods to solve monotonous 
and convex equations [1–4]. Take into account the non-linear monotone equations.[4]

 F x x� � � �0 , ,�  (1.1)

Where F Rn:� � , continuous and monotone function, and � � Rn  Is a closed convex set, F refers to 
it as the monotone function,which means:

 F x F y x y x y� � � � � � � � �, , , .0 �  (1.2)

There are many contributions to solving optimization problems that contain non-linear monotone 
equations. Among these contributions, Newton’s and quasi-Newton's methods are the most famous. 
Its global convergence was quickly proven, but working in these ways requires lengthy arithmetic 
operations in addition to the need for a large memory [7, 8], which led to finding more effective alter-
nativesin solving such problems (2, ...,6).to solve unconstrained monotone equations, we used the 
search direction d As d F d FK K K K: , ,0 0� � � � �  Where βK It is a parameter with different forms [9, 10].
The proposed method showed that it is suitable for solving non-linear systems of equations if they are 
monotone. This is done using the project technique with some updates, and Its convergence has been 
proven. The numerical results were also very acceptable and in a satisfactory time[11, 12]. One of the 
advantages of this method or this update over the projection method is that it has low memory, which 
makes it suitable for solving monotonous optimization problems (8, ..., 18) [13, 14]. In this paper, we 
will construct our changes as follows for solution (1.1); we w and
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And the αk must satisfy the conditions: 

 F x d dk k k
T

k k�� � �� �� .  (1.5)

Where αk is any scale.
Note that over the principle that dk is a descent direction of the function f at the point xk,all itera-

tive algorithms use this important property to ensure their convergence [17, 18].

1. Proposed Methodology and Algorithms

In this section, we will explain our modification to the original Algorithm for the projection method 
by making simple and effective changes at the same time to: αk, βK And line search as the following:

Step 1: Select initial point x0 0 1 0 1 0 001� �� � �� � �� , , , , , .� � � . and Set k = 0.

Step 2: If F (xk) = 0, then stop; else, calculate dk in (1.3), 
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Step 3:  find αk which satisfy F x d dk k k
T

k k�� � �� �� , Set: x x dk k k k� � �1 �

Step 4: if F (xk+1) = 0, then stop. Otherwise, compute x x dk k k k� � �1 � , where: � ��k k�

Step 5: Set k := k + 1. Go to Step 2.

2. Global Convergence

To prove the global convergence for the Algorithm in section 2, we take the following assumption:  
[19, 20]. 

Assumption K: the mapping F is Lipchitz continuous on Ω, i.e., ∃ a positive number L > 0, such that

 F x F x Lx x x x1 2 1 2 1 2�� ��� �� �� � � � �, , �  (3.1)

Lemma 3.1. [21] Assume that the assumption K holds, and {xk} be the sequence created by the 
Algorithm (2), then for all positive numbers C > 0, we have :
 F(xk) ≤ C. (3.2)
Proof: For all x�� , satisfy
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From (1.5), for all k, we have

F x F x F x Lx x Lx xk k k� � � � � � � � � � � �0 .

Suppose S Lx x� �0 , then (3.2) is proved clearly. □

Theorem 3.2. Since the assumption K is satisfied and the sequence {xk} is generated by Algorithm 
(2) then: Lim F

k k��
�inf .0  (3.3)

Proof: Let (3.3) unverified, then for � � 0
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Now d d Fk k k k� ��� . 1

From the above formula and Lemma 3.1, we have dk  ≤ C where C is a positive scalar. By (3.4), (3.5), 
and (3.6), there is a contradiction about inequality d d Fk k k k� ��� . 1 . Since (3.3) clamps and Theorem 
are established. Finally, it must be well-defined to prove the convergence of the Algorithm used in this 
research. Therefore, based on assumption k, we will consider that αk Satisfies: F x d dk k k

T
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3. Numerical Results

In this sectionwill be shown. We utilized a PC with 8 GB RAM and a 2.20 GHz CPU. The MATLAB R2014 
codes were created. The stop condition is  F xk.� � � �10 8  to obtain excellent accuracy for all test prob-
lems. Over 500000 iterations in total. The parameters used were as follows: � � �� � �0 10 0 2 0 00001. , . , . . 
We’ll compare our Algorithm to two others that addressed the same problem and employed the same 
parameters or a methodology for addressing the parameters in our Algorithm in their solutions. The 
results of [22] and [23] have been encoded as QD and MM in the tables sequentially. The following 
tables contain a list of the outcomes of the tested algorithms. Table 1 shows the function evaluations, 
the iterations, and how long each Algorithm took to complete a given task.

Table 1: Functions Evaluations (f eval ), Iterations (Iter), CPU-Time (in seconds).

problem Dim
(f eval ) (Iter) CPU-Time (in seconds)

Algorithm QD MM Algorithm QD MM Algorithm QD MM
P1 500000 86 417 74 22 102 150 0.28125 1 0.687

500000 86 572 122 22 133 964 0.304688 4.4 3081
500000 83 606 70 21 138 142 0.28125 7.2 1.078
500000 83 620 493 21 140 313 0.289063 9 8.156
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P2

500000 8 739 72 2 92 146 0.09375 0.2 0.578
500000 19 182 135 3 200 107 0.078125 0.8 3416
500000 5 243 72 1 256 146 0.015625 1.7 1.078
500000 16 287 64 2 295 132 0.0625 2.5 0.546

P3

500000 27 739 62 2 92 126 0.5 0.2 0.562
500000 321 182 996 16 200 789 6.375 0.9 2751
500000 187 243 64 10 256 130 3.742188 1.9 0.921
500000 1062 287 487 50 295 312 21.375 2.6 8.031

P4

500000 152 797 63 21 169 128 0.140625 6.1 0.515
500000 157 186 101 30 462 935 0.117188 35 3071
500000 146 324 67 15 804 136 0.125 11 1.031
500000 150 485 63 19 120 128 0.117188 28 0.500

Conclusion

Convex monotone equations were solved using a modification to the projection method, and the numer-
ical results showed that our proposed method was superior for solving these equations. The suggested 
Algorithm’s smooth global convergence has been proved. The recommended approach, distinguished 
by little memory usage, inexpensive calculations, and standard or adequate time, was suitable for 
addressing the presented problems under specified situations.
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