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Abstract
Many different fields have found extensive use for the Pareto distributionType II. The Maximum 
Likelihood Method (ML), and Bayeswill all be used in this study to estimate the parameters of the 
Pareto distributionType II. Next, we will attempt to determine the parameter’s first shrinkage esti-
mator for the estimators of the techniques we are investigating. This study’s primary goal is to pro-
vide two initial shrinkage estimator comparisons between two estimators: First, there is a shrinkage 
estimator between the maximum likelihood and the Bayes estimators; second, there is a shrinkage 
estimator between the first shrinkage estimator and the Bayes estimator. The performance of these 
estimators was examined using Monte Carlo simulation in order to determine which, as measured by 
the MSE criterion, one is the best.
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1. Introduction

The 19th century saw the development of the Pareto distributionType II (also called Lomax Distribution 
that introduced by Lomax (1945) [2]), named for the Italian economist Vilfredo Pareto, which is a 
heavy-tailed and it is intended to simulate how wealth was distributed across the people [15]. Years 
after its introduction, significant modifications and alterations were made to it, resulting in several 
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variations referred to as Type I, II, III, and IV Pareto distributions, along with the generalized Pareto 
distribution (GPD).

The focus of this study is on the Pareto Type II distribution, also known as the Lomax distribution. 
Originally applied to simulate business failure data [18], this extensively utilized distribution has 
served as a model in various contexts ever since.

This distribution has proven to be valuable in modeling survival times in the presence of censoring. 
For instance, the exponential Lomax and Weibull Lomax distributions have demonstrated good suit-
ability for right-censored lung cancer survival data [3] and the lifetime of electrical transducers [12]. 
With times being left-truncated and right-censored, this distribution was found to offer the most suit-
able fit among various distributions considered. Additionally, this distribution finds applications in 
modeling wealth distribution [10], queuing service times [7], life testing [8], and the sizes of files on a 
computer server [9]. To avoid confusion, we will use the term Pareto II instead of Pareto distribution 
Type II.

Many studies have addressed the estimation of the parameters of the Pareto II distribution using 
several methods, including the Maximum Likelihood and Bayes methods for complete data. Other 
studies have also attempted to improve these estimators, including the Shrinkage estimator. Some 
studies have indicated that the shrinkage estimator can reduce the variance in the estimates result-
ing from the Pareto II distribution, which improves the accuracy of predictions and makes the models 
more stable. Some of these studies will be reviewed:

Alkutubi  and Ibrahim (2009) [4] present three shrinkage estimators for exponential distribu-
tion with maximum likelihood estimator,  Bayes estimator, and modify Bayes estimator, where the 
Bayesian method and the extended Bayesian method performed better in estimation using shrinkage

Prakash (2010) [17] studied the properties of the shrinkage test–estimators of the parameter were 
studied for an inverse Rayleigh model under the asymmetric loss function. Both the single and double–
stage shrinkage test–estimators are considered. He concluded that the performance of both shrinkage 
test estimators is consistently good with respect to the improved q c  estimator for the considered set 
of parameter values  based on the presented data. In terms of increasing efficiency, qSH3  is preferred 
over qSH2  in the region 0.60 ≤ d ≤ 1.40. And the two-stage shrinkage test estimator qDSH  is good with 
respect to the improved ensemble estimator q PC  for the entire considered set of parameter values.

Mohammed et al. (2012) [13] proposed the two-stage shrinkage estimator for the initial test 
(PTDSSE) to estimate the shape parameter of the Pareto II distribution when the scale parameter 
is equal to the smallest loss in the area (R) around the available prior knowledge (alpha) around the 
actual value (alpha) as a primary estimator as well as to reduce the mean square error and the cost 
of experiments, as it can be used in cases where the time taken for the experiment and the cost of 
the sample are very expensive and costly, as the use of the two-stage leads to reducing the expected 
sample size required to obtain the estimator that reduces these costs.

Hamad (2013) [5] considered the two-stage shrinkage estimator to minimize the mean square error 
of the classical estimator (MLE) of the shape parameter (a) of the generalized exponential distribu-
tion in a region (R) around the available prior knowledge (a0) about the actual value (a) as an initial 
estimate in case the scale parameter (l) is known and also to reduce the cost of experiments. This esti-
mator was shown to have a smaller mean square error for a given choice of shrinkage weight factor 
Ã(.) and for the mentioned region of acceptance R.

Salman and Hussein (2016) [20] used an employee single-stage shrinkage estimator to estimate 
the Pareto distribution’s shape parameter when the scale parameter is known. The proposed estima-
tor is shown to have a smaller mean squared error in a region around theta0 compared to the usual 
and existing estimators.

Labban (2019) [11] proposed new method (T.O.M) to estimate distribution parameters for complete 
data. It gave good results compared to the other studied methods based on the MSE criterion.

Salman and Hamad (2019) [19] used different shrinkage estimation methods to study the problem 
of estimating reliability system in stress-strength model under mismatch and independent of stress 
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and strength and following the Lomax distribution. They adopted maximum likelihood, moment 
method and shrinkage weight factors based on Monte Carlo simulation. These methods were based 
on combining the maximum likelihood estimator and moment method as prior information using dif-
ferent shrinkage weight factor, and it was found that the shrinkage estimator using fixed shrinkage 
weight factor (Sh1) has the lowest statistical index (MAPE) in most cases.

Abd Ali, Jiheel  and Al-Hemyar (2022) [1] proposed two-stage Bayesian shrinkage estimator for the 
shape parameter of the Pareto distribution. It was assumed that the prior knowledge of θ can take 
the form of an initial estimate θ0 of θ, where the region R was divided into two regions R1 and R2, and 
the bias, bias ratio, mean square error, expected sample size, and relative efficiency were derived. 
The results indicated that the region R2 is better than the region R1, and the shrinkage estimators are 
preferred due to their higher relative efficiency compared to the classical Bayesian estimator.

Pels, et al. (2023) [16] proposed two new methods for estimating the shape parameter of the gen-
eralized Pareto distribution (GPD), using the shrinkage principle to adapt the existing empirical 
Bayesian to the data-driven prior and the probability moment method to obtain estimators. The 
results showed that the proposed estimators perform better for a small to moderate number of over-
fittings in estimating the shape parameter for light-tailed distributions and are competitive when 
estimating heavy-tailed distributions.

The Pareto II distributionis a continuous probability distribution used in probability theory and 
statistics. Outside of the field of economics, this scheme is known as the Bradford distribution, and 
it describes the probability density function (p.d.f.) of a continuous random variable X of the Pareto 
distribution [14]:
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One of the requirements for the research is to use the following equation to create sample data from 
the Pareto distribution:
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where y has a uniform distribution with interval (0,1), and arbitrary parameter values a, b.

In this paper we will estimate Lomax distribution parameters using maximum likelihood and 
Bayes method and then find the first shrinkage and second shrinkage.

2. Estimation Methods

In this paper, to find estimator parameters for Pareto distribution Type II, we will use different 
sample size (N = 50, 150, 250), and three models of parameter values and shown in Table (1):

Table 1: Models of different values of parameters.
Parameter Model 1 Model 2 Model 3

Α 1 2 5
b 2 4 3

2.1. Maximum Likelihood Estimatorfor Complete Data

One of the widely adopted methods for estimating unknown parameters within probability distribu-
tions is maximum likelihood estimation (MLE). Due to its advantageous asymptotic properties like 
consistency and unbiasedness, MLE has gained significant popularity. However, these attributes may 
not hold true for small sample sizes, potentially leading to biased MLEs.
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For n independent observations, the likelihood function for Pareto II distribution is:
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And again by maximize equation (5) by taking first partial derivative over b we have:
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As we can see in (8), we cannot get a close form solution for the estimator of b, so numerical procedures 
are required, which is Newton Raphson to get the maximum likelihood estimator of b which is bML .

2.2. Bayes Estimator for Complete Data

The Bayes viewpoint has drawn a lot of attention for statistical inference in recent decades as a strong 
and legitimate substitute for conventional statistical viewpoints. This section addresses the use of a 
squared error loss function in Bayesian estimation of the unknown parameters of Pareto Distribution.

According to Jeffry’s method, the non-informational initial probability function for each of the two 
random parameters a, b can be assumed according to the following two formulas:

The prior distribution for a, b. [6]
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The likelihood function for the Pareto Distribution in (4) can be rewritten as:
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The posterior
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To estimate Pareto distribution parameters we using the square error loss function:

L( , ) ( )q q q q = - 2  (12)
Where q q and   represent the vector of parameters and vector of the parameters estimator respectively.

To estimate the unknown parameters a, b we use the average risk (MSE for square error loss) 
which define by the following:
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And then the Bayesian estimators to the Pareto parameters under square error loss function are:
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Using Lindley approximation [21] to estimate the Pareto parameters as follows:
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Where m represent the number of parameters, here m = 2, and u(a, b) is a function of parameters a, 
b, such that u(a, b) = α for α parameter, and u(a, b) = b for b parameter, and
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So, with substitute all derivatives with u(a, b)= α, we have a = I x( ) .
In the same way, when u(a, b) = b, then
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So, with substitute all derivatives with u(a, b) = b, we have b = I x( ) .

2.3. First Shrinkage Estimator between Maximum Likelihood Estimator and Bayesian Estimator

The shrinkage estimator can be written by linear combination of MLE estimator and Bayesian 
estimator:

� � �a w a w a1 1 11= + -ML B( )  (15)
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where q  represents a vector of parameters a a 

ML B,  and r is the number of simulation, which is 500.
To obtain the value of p that minimized equation (19) we use the Matlab R2021a program.

2.4. Second Shrinkage Estimator between First Shrinkage and Bayesian Estimator

The second shrinkage estimator can be written by linear combination of first shrinkage estimator and 
Bayesian estimator:
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where q  represents a vector of parameters � �a a1. B  and r is the number of simulation, which is 500.
To obtain the value of w2  that minimized equation (25) we use the Matlab R2021a program.
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3. Simulation Study

In our simulation study we chosen different sample size (N = 50, 150, 250) with different values of 
parameters shown in table (1). The simulation program was written using Matlab R2021a program 
with replication 500. The MSE using to determine the best method of the four estimators (Maximum 
Likelihood, Bayes, First shrinkage, Second shrinkage) using the following formula:

MSE
r

F x F xi i
i

r
( ) [ ( ; ) ( ; )]q q q� � �= -

=
å1 2

1

Where F xi� �( ; )q  represent the cumulative function for estimated parameters q , and F(xi; θ) represents 
the true value of cumulative function of true parameters.

The estimators for Maximum likelihood, Bayes, First shrinkage, and Second shrinkage for our 
models of parameters are shown in Tables (2-4) below:

Table 2: Calculate the estimators of Maximum likelihood, Bayes, First shrinkage,  
and Second shrinkage for model 1.

N qMLE q B w1 q1 w2 q 2

a
50

1.28316 1.29433 0.50451 1.28870 0.4999 1.28524

b 1.38691 1.42233 0.50421 1.40447 0.5000 1.41343

a
150

1.17510 1.17823 0.50163 1.17803 0.4999 1.17520

b 1.54421 1.55773 0.50422 1.55732 0.5000 1.61343

a
250

1.13011 1.13212 0.50095 1.13421 0.4999 1.12514

b 1.62712 1.63601 0.50266 1.632230 0.5000 1.66401

Table 3: Calculate the estimators of Maximum likelihood, Bayes, First shrinkage,  
and Second shrinkage for model 2.

N qMLE q B w1 q1 w2 q 2

a
50

1.99820 2.01811 0.50327 2.00521 0.4999 1.98112

b 4.34510 4.47821 0.50304 4.41131 0.4999 4.40822

a
150

2.02620 2.03065 0.50109 2.02842 0.4999 1.9921

b 4.34520 4.21639 0.50282 4.28131 0.4999 4.24833

a
250

2.03360 2.03630 0.5006 2.03493 0.4999 2.00751

b 4.34520 4.13071 0.50166 4.23854 0.4999 4.18463
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Table 4: Calculate the estimators of Maximum likelihood, Bayes, First shrinkage,  
and Second shrinkage for model 3.

N qMLE q B w1 q1 w2 q 2

a
50

5.28229 5.30133 0.50155 5.29313 0.4999 5.29723

b 3.47066 3.51150 0.50339 3.49629 0.4999 3.47239

a
150

5.35111 5.35666 0.50052 5.35388 0.4999 5.35527

b 3.22088 3.22945 0.50134 3.22516 0.4999 3.21813

a
250

5.35342 5.35676 0.500313 5.35508 0.4999 5.35592

b 3.13954 3.14440 0.50077 3.14195 0.4999 3.13793

Table 5: MSE values of Maximum likelihood, Bayes, First shrinkage, and Second  
shrinkage for the Model 1. (×10–3)

N qMLE q B q1 q 2 Ranking the Best Estimator

50 0.1369590 0.1617070 0.1361260 0.1349760 q 2 , q1 , qMLE , q B

150 0.0872673 0.0685117 0.0763354 0.0684692 q 2 , q B , q1 , qMLE

250 0.0677067 0.0532938 0.0599225 0.0392344 q 2 , q1 , qMLE , q B

Table 6: MSE values of Maximum likelihood, Bayes, First shrinkage, and Second  
shrinkage for the Model 2. (×10–3)

N qMLE q B q1 q 2 Ranking the Best Estimator

50 0.4014640 0.6583860 0.5216890 0.3314930 q 2 , q1 , qMLE , q B

150 0.1629720 0.2087430 0.1850740 0.1236000 q 2 , q B , q1 , qMLE

250 0.1005860 0.1216220 0.1108150 0.1005620 q 2 , q1 , qMLE , q B

Table 7: MSE values of Maximum likelihood, Bayes, First shrinkage, and Second  
shrinkage for the Model 3. (×10–2)

N qMLE q B q1 q 2 Ranking the Best Estimator

50 0.2558906 0.2859551 0.2706498 0.2558528 q 2 , q1 , qMLE , q B

150 0.1237130 0.1302365 0.1269485 0.1237081 q 2 , q B , q1 , qMLE

250 0.0847752 0.0879434 0.0863428 0.0847732 q 2 , q1 , qMLE , q B
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4. Discussion

We note from Table (5) that the second shrinkage estimator q 2  between first shrinkage q1  (between 
Maximum likelihood and Bayes estimator) is the best estimator because it has the lowest error than 
the rest of the estimators, according to MSE, for all sample sizes. In second place is the first shrinkage 
estimator q1  between Maximum likelihood and Bayes estimator for most sample sizes. In third place 
comes the maximum likelihood estimator for most sample sizes. The Bayes estimator comes in last 
place for most sample sizes, according to values of the parameters in Model 1.

In Table (6) we can see that the second shrinkage estimator q 2  is the best estimator because it has 
the lowest error than the rest of the estimators, according to MSE, for all sample sizes. In second place 
is the maximum likelihood estimator for all sample sizes. In third place comes the first shrinkage esti-
mator q1  for all sample sizes. The Bayes estimator comes in last place for all sample sizes, according 
to values of the parameters in Model 2.

In Table (7) we can also seethat the second shrinkage estimator q 2  is the best estimator because it 
has the lowest error than the rest of the estimators, according to MSE, for all sample sizes. In second 
place is the maximum likelihood estimator for all sample sizes. In third place comes the first shrink-
age estimator q1  for all sample sizes. The Bayes estimator comes in last place for all sample sizes, 
according to values of the parameters in Model 3.

5. Conclusion

From the previous tables, we note that the second shrinkage was the better estimation method than 
the other methods under study. It is also clear to us that by increasing the number of shrinkages, we 
will arrive at better estimates of the distribution parameters.
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