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Abstract
This paper explores the dual optimization of time and cost objectives in the construction of residential 
complexes. By employing multiple objective functions, this study aims to determine the most effi-
cient construction schedule that simultaneously minimizes time and cost. By applying mathematical 
optimization techniques, such as linear programming and multi-objective optimization algorithms, 
we seek to develop a systematic approach to balancing these competing objectives while considering 
constraints such as resource availability, project scope, and quality standards. By evaluating different 
trade-offs between cost and time, we found insights into optimal scheduling strategiesFor residential 
complex projects, which contributed to enhancing project management practices and improving proj-
ect outcomes in the constructionindustry. Due to the complexities of residential projects, they involve 
many interconnected activities that must be implementedcarefully, planned, and coordinated. This 
paper aims to reduce the time required to complete the project at the lowest possible cost because 
delay leads to substantial financial losses.
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1. Introduction

Project completion requires careful planning and resource management for timely completion while 
minimizing project costs [1, 2]. To ensure project success and stakeholder satisfaction, achieving Time 
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and cost minimization and balancing these goals is critical. At the same time, ensuring that quality 
standards are maintained [3]. The trade-off between time and cost is a challenge, and in response to 
this challenge, cost optimization techniques have emerged in construction projects [4, 5].

The concept of objective programming was created and developed. By Lee [6] and Ignisio [7]. As a 
result, goal programming has become an invention for solution and decision-making. Among these 
techniques, the simple method, a basic algorithm in linear programming, provides a systematic 
framework for optimizing project schedules considering multiple objective functions [8]. Yano and 
Sakawa [9] proposed an interactive fuzzy method for decision-making for multiple problemobjectives: 
Stochastic fuzzy linear programming andimproving the fragility criteria to obtain an acceptable solu-
tion. Nirma and Khan [10] presented a simple approach to solving the multi-objective linear program-
ming (MOLP) problem, where all objectives are optimized simultaneously.

This paper aims to explore the extent of the application of the simple method to solve a multi- 
objective problem in terms of time and cost. The focus was on finding solutions with the least time and 
lowest price for building residential complexes. By formulating the construction project as a linear 
programming problem with multiple objective functions, using the weighted exaggeration method. 
Comparison between objectives was achieved to find the optimal solution to reduce time and cost and, 
simultaneously, to balance these competing objectives, considering constraints such as the availabil-
ity of resources, the scope of the project, and quality standards.

2. The Problem of Multi-Objective Linear Programming

A multi-objective linear programming problem has objective functions k of n variables Subject to m 
constraints where the objective functions and constraints are linear [11]. Standard form It can be 
written as follows:

Minimize (f1(x) = c1x, f2(x) = c2x, f3(x) = c3x, …, fk(x) = ck(x) (1)
Subjects to

0 ≤ gj(x) ≤ 0, j = 1, 2, ..., m

hi(x) = 0, i = 1, 2, ..., n
Where c1 = (c11, c12, c13, …, c1n), c2 = (c21, c22, c23, …, c2n), …, ck = (ck1, ck2, ck3, …, ckn), x = (x1, x2, …, xn)

3. Weighted-Sums Method

The weighted sum method is an effective method for solving multi-objective optimization problems. 
We use this method to find the shortest time and lowest cost to build an apartment complex. This 
method combines multiple objectives into one objective function, as in Equation (1), and uses weights 
that reflect the relative importance of each objective. A weight is assigned to each objective function, 
and then the functions are combined to build one objective function, such that the sum of the weights 
assigned to the functions equals one, where these weights represent the importance of each goal to 
decision-makers [12, 13]. Therefore, the above optimization model will be in the following form:

Minimize W1f1 + W2f2 + W3f3 + ... . + Wkfk

Subjects to:
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4. Simplex Algorithm for Solving Multi-Objective Linear Programming Problems

1- Set of objective functions: The combined objective function can be generated by weighting the 
cost and time functions.

1.a. Define the Objectives:
·	 Objective 1: Minimize Cost
·	 Objective 2: Minimize Time

1.b. Assign Weights to Objectives:
Assign weights wk such that wkk

p =
=å 11

1.c. Formulate the Combined Objective Function:

Using the weights, combine the cost and time objectives into a single objective function.

2-Constraints: Constraints are prepared according to the requirements of the problem. Where all 
necessary restrictions related to work, materials, and non-negativity are specified.

3- Optimization: Using the Simplex method, the liner program function is used to solve the optimal 
solution of the combined objective function. This is done by repeatedly applying the Simplex method 
to different weight combinations to find optimal Pareto solutions.

4-Pareto Solutions: These solutions provide the optimal values of decision variables, cost, and time, 
allowing decision-makers to select the best trade-off between cost and time.

5. Mathematical formulation

We define the cost and time objective functions:

Cost Function:

Estimate the proposed cost: Minimize cost zc = 10x1 + 35x2 + 70x3 + 105x4 + 60x5

Time Function:

Suggested time estimate: Minimize time zt = 7x1 + 28x2 + 40x3 + 28x4 + 60x5

Where x1: Site preparation, x2: Basic floor structure works, x3: Structure construction, x4: Floor and 
wall painting works, x5: Electrical and finishing works. The coefficients of the proposed time func-
tion are the number of weeks to complete the task, while the cost function coefficients are the cost in  
millions during one week.

Using the weighted vulnerability sums method (interactive method), a weight is assigned to each 
objective function, where the functions are combined to build one objective function, noting that the 
sum of the weights equals one. Therefore, the proposed optimal model will be converted to the follow-
ing optimization formula:

Minimize Z = w1zc + w2zt

Z = w1(10x1 + 35x2 + 70x3 + 105x4 + 60x5) + w2(7x1 + 28x2 + 40x3 + 28x4 + 60x5)

By suggesting a weight for each function by diet specialists where W1 = 0.4, W2 = 0.6 so, the mathe-
matical model will be as follows:

Z = 0.4(10x1 + 35x2 + 70x3 + 105x4 + 60x5) + 0.6(7x1 + 28x2 + 40x3 + 28x4 + 60x5)

Minimize Z = 8.2x1 + 30.8x2 + 52x3 + 58.8x4 + 60x5
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Constraints
5x1 + 20x2 + 25x3 + 20x4 + 15x5 ≥ 35

2x1 + 6x2 + 4x3 + 6x5 ≤ 20
6x2 + 3x3 + 3x4 + 5x5 ≥ 10

x1 + 3x2 + 2x3 + 2x4 ≤ 6
2x1 + 2x2 + 2x5 ≥ 6
x1,x2,x3,x4,x5 ≥ 0

Where x1: Site preparation, x2 : Foundation floor structure works, x3: Building the structure, x4: Floor 
and wall coating work, x5: Electric work and finishing. To obtain the initial basic solution possible 
using Big-M, the problem is converted to canonical form by adding slack, redundant, and artificial 
variables, where S1, S2, S3, S4, S5 ≥ 0, as a redundant variable and A1, A2, A3 ≥ 0 as the artificial and 
suitable variable.

Iteration 1 Cj 8.2 30.8 52 58.8 60 0 0 0 0 0 M M M XB

X2B CB xB x1 x2 x3 x4 x5 S1 S2 S3 S4 S5 A1 A2 A3

A1 M 35 5 20 25 20 15 -1 0 0 0 0 1 0 0 35
20

1 75= .

S2 0 20 2 6 4 0 5 0 1 0 0 0 0 0 0 20
6

3 33= .

A2 M 10 0 (6) 3 3 5 0 0 -1 0 0 0 1 0 10
6

1 66= .

S4 0 6 1 3 2 2 0 0 0 0 1 0 0 0 0 6
3

2=

A3 M 6 2 2 0 0 2 0 0 0 0 -1 0 0 1 6
2

3=

Z = 51M Zj 7M 28M 28M 23M 22M -M 0 -M 0 -M M M M
Zj –Cj 7M- 

8.2
28M- 
30.8 ↑

28M- 
52

23M- 
58.8

22M- 
60

-M 0 -M 0 -M 0 0 0

The positive maximum Zj –Cj is 28M-30.8, so the input variable is x2, the minimum ratio is 1.6667, and 
the departure basis variable is A2.

Iteration 2 Cj 8.2 30.8 52 58.8 60 0 0 0 0 0 M M XB

X3
B CB xB x1 x2 x3 x4 x5 S1 S2 S3 S4 S5 A1 A3

A1 M 1.66 5 0 (15) 10 -1.66 -1 0 3.33 0 0 1 0 1 66
1 5

0 11.
.

.=

S2 0 10 2 0 1 -3 1 0 1 1 0 0 0 0 10
1

10=

X2 30.8 1.66 0 1 0.5 0.5 0.83 0 0 -0.16 0 0 0 0 1 66
0 5

3 33.
.

.=

S4 0 1 1 0 0.5 0.5 -2.5 0 0 0.5 1 0 0 0 1
0 5

2
.

=

A3 M 2.66 2 0 -1 -1 0.33 0 0 0.33 0 -1 0 1 —

Z = 4.33M 
+ 51.33

Zj 7M 30.8 14M+
15.4

9M+
15.4

-1.33M+ 
25.66 -M 0 3.66M-

5.13 0 -M M M

Zj –Cj
7M- 
8.2 0 14M-

36.6↑
9M-
43.4

-1.33M-
34.33 -M 0 3.66M-

5.13 0 -M 0 0
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The positive maximum Zj –Cj is 14M-36.6, so the input variable is X3, the minimum ratio is 0.11, and 
the departure basis variable is A1.

Iteration 3 Cj 8.2 30.8 52 58.8 60 0 0 0 0 0 M XB

X1
B CB xB x1 x2 x3 x4 x5 S1 S2 S3 S4 S5 A1

x3 52 0.11 (0.33) 0 1 0.66 -0.11 -0.06 0 0.22 0 0 0 0 11
0 33

0 33.
.

.=

S2 0 9.88 1.66 0 0 -3.66 -0.11 0.06 1 0.77 0 0 0 9 88
1 66

5 93.
.

.=

X2 30.8 1.61 -0.16 1 0 0.166 0.88 0.03 0 -0.27 0 0 0 —

S4 0 0.94 0.83 0 0 0.166 -2.44 0.03 0 0.38 1 0 0 0 94
0 83

1 13.
.

.=

A3 M 2.77 2.33 0 0 -0.33 0.22 -0.06 0 0.55 0 -1 1 2 77
2 33

1 19.
.

.=

Z = 2.77M 
+ 55.4 Zj 

2.33M+ 
12.2 30.8 52 -0.33M+ 

39.8
0.22M+

21.6
-0.66M-

2.44 0 0.55M+ 
3 0 -M M

Zj –Cj
2.33M+ 

4↑ 0 0 -0.33M-19 0.22M- 
38.4

-0.06M-
2.44 0 0.55M+ 

3 0 -M 0

The positive maximum Zj – Cj is 2.33M+4, so the input variable is x1, the minimum ratio is 1 so the 
departure basis variable is x3

Iteration 4 Cj 8.2 30.8 52 58.8 60 0 0 0 0 0 XB

X5B CB xB x1 x2 x3 x4 x5 S1 S2 S3 S4 S5

x1 8.2 0.33 1 0 3 2 -0.33 -0.2 0 0.66 0 0 —

S2 0 9.33 0 0 -5 -7 0.66 0.4 1 -0.33 0 0 9 33
0 66

14.
.

=

X2 30.8 1.66 0 1 0.5 0.5 0.83 0 0 -0.16 0 0 0 66
0 83

2.
.

=

S4 0 0.66 0 0 -2.5 -1.5 -2.16 0.2 0 -1.66 1 0 —

A3 M 2 0 0 -7 -5 (1) 0.4 0 -1 0 1 2
1

2=

Z = 2M + 
54.06

Zj 8.2 30.8 -7M+40 -5M+ 31.8 M+22.93 0.4M-1.64 0 -M+0.33 0 -M

Zj –Cj 0 0 -7M-12 -5M-27 M-37.06↑ 0.4M-1.64 0 -M+0.33 0 -M

The positive maximum Zj – Cj is M-37.06, so the input variable is X5, the minimum ratio is five, and 
the departure basis variable is A3.

Iteration 5 Cj 8.2 30.8 52 58.8 60 0 0 0 0 0 XB

X5B CB xB x1 x2 x3 x4 x5 S1 S2 S3 S4 S5

x1 8.2 1 1 0 0.66 0.33 0 -0.06 0 0.33 0 -0.33 —

S2 0 8 0 0 2-.66 3-.66 0 0.13 1 0.33 0 0.66 8
0 13

60
.

=

X2 30.8 0 0 1 6.33 4.66 0 -0.33 0 0.66 0 0.83 —
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S4 0 5 0 0 -17.66 -12.33 0 (1.06) 0 -2.33 1 -2.16 5
1 06

4 68
.

.=

X5 60 2 0 0 -7 -5 1 0.4 0 -1 0 -1 2
0 4

5
.

=

Z = 128.2 Zj 8.2 30.8 -219.46 -153.53 60 13.18 0 -36.73 0 -37.06
Zj –Cj 0 0 -27.4667 -212.33 0 13.18↑ 0 -36.73 0 -37.06

The positive maximum Zj – Cj is 13.18, so the input variable is S1, the minimum ratio is 4.68, and the 
departure basis variable is S4.

Iteration 6 Cj 8.2 30.8 52 58.8 60 0 0 0 0 0
B CB xB x1 x2 x3 x4 x5 S1 S2 S3 S4 S5

X1 8.2 1.31 1 0 -0.43 -0.43 0 0 0 0.18 0.06 -0.46
S2 0 7.25 0 0 1.37 -2.12 0 0 1 0.62 -0.12 0.93
X2 30.8 1.56 0 1 0.81 0.81 0 0 0 -0.06 0.31 0.15
S1 0 4.68 0 0 -16.56 -11.56 0 1 0 -2.18 0.93 -2.03
X5 60 0.12 0 0 -0.37 -0.37 1 0 0 -0.12 -0.37 -0.18
Z = 66.38 Zj 8.2 30.8 -1.06 -1.06 60 0 0 -7.88 -12.36 -10.28

Zj –Cj 0 0 -53.06 -59.06 0 0 0 -7.88 -12.36 -10.28

Since all Zj – Cj ≤ 0 Hence, the optimal solution is arrived with value of variables as 

x1 = 1.312, x2 = 1.562, x3 = 0, x4 = 0, x5 = 0.125, Min Z = 66.387

6. Results and Discussion

The above model has five variables and five constraints. Using the Simplex method, a solution to this 
problem was obtained. The Simplex method produced a set of Pareto optimal solutions, each repre-
senting a different balance between cost and time. Where Minimize Z = 66.387, x1 = 1.312, x2 = 1.562, 
x3 = 0, x4 = 0, x5 = 0.125, Minimize Cost = 63.5 million per week, Minimize Time = 60 weeks. The lowest 
possible cost was obtained within one week, with the least time required to complete the project after 
prioritizing cost over time. Critical activities requiring resource allocation are prioritized to minimize 
delays and costs. Resource constraints such as labor availability and physical limits were strictly 
adhered to, ensuring realistic and practical solutions. These solutions have provided various options 
that enable stakeholders to choose based on their priorities.

7. Conclusion

Using the weighted sum method, we can effectively find the optimal trade-offs between minimizing 
the cost and time of building an apartment complex. The project was completed in 60 weeks. And at 
a weekly cost of 63.5 million per week. Therefore, this approach helped us make informed decisions 
that balanced the financial and time constraints of the project, leading to better project management. 
The Simplex method has proven to be highly effective in identifying optimal solutions for both cost 
and time. Its mathematical accuracy and ability to handle multiple constraints make it a suitable 
tool for complex construction projects. The method’s ability to generate Pareto optimal solutions pro-
vided decision-making flexibility, allowing stakeholders to choose solutions that best fit their strategic 
objectives.
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