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Abstract
In this paper we develop a new approach to get the transformation solution for the mathematical 
model of waves on shallow fluid; Korteweg-de Vries with a small delay without change the space vari-
ables. This method can be base to solve most of nonlinear higher order partial differential equation 
with time delay. 
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1. Introduction

 Currently, the prediction and comprehensive knowledge of the development of mathematical mod-
elling phenomena in life sciences and physiology have significantly intensified [1]. The Korteweg-de 
Vries (KdV) equation is a mathematical model which describes the velocity of the particles of shallow 
fluid from the surface to the bottom of the fluid layer. Russell J.S. described the Korteweg-de Vries 
equation (KdV) starting from fluid dynamics [2]. Next, the KdV is solved, by the same approach of 
Korteweg but de Vries solved it by inverse scattering transform which is leading to a larger family of 
solutions [2]. Many researchers solved KdV equation by several ways see [3,4,5,6]. Zhao and Xu [7] 
entered time delay on the Solitary waves for KdV, so it is became takes the form 
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u t x u t x u t x ru t x u t xt x xx xxx( , ) ( , ) ( , ) ( , ) ( , ) = 0� � � � �� � (1)

where τ  is time delay, τ > 0 . u t x( , )  is the waves amplitude when x  is positive in time t u t x, ( , )��  is the 
waves amplitude of the wave when x  is positive in time t �� . r  is small enough. 

They proved that time delay make this equation more explained, but in the same hand more com-
plicated. Some researchers studied KdV equation with delay by the stability of it see [8,9,10,11], and 
the solution of Equation (1) has not been discussed yet, so this paper interdicted a new method to 
solve KdV with delay. The key idea is to findthe invariance of the KdV equation under transformation 
of dependent and independent variables. Next modified Olver’s method to get the transformation 
solution which corresponds to the KdV equation.

2. Admitted Lie group

First, one must prove the general infinitesimal generator for KdV equation with small delay.
From Equation (1), define a one-parameter group G  on t x u, ,  as follows: 
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Since u u t x� �= ( , )� , then u t x uu�
�� � �= ( , , ; )� , according to Olver [12] these define a symmetry 

group. Expanding Equation(2) into Taylor series about ε  near 0 , this is given the infinitesimal 
transformation 
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According to Lie [13] the vector ( , , , )� � � � �  where � � �� �= ( , , )t x u�  are tangent vector field on G , so 
can be written them in term of the first order differential operator [14] 

X
t x u u

= � � � � �
�

�
�
�

�
�

�
�
�

�
�
�

(3)

Lie’s theorem [14] shows the general is one to one corresponding to the symmetry.
From the definition of infinitesimal generator, Equation(3) is a general infinitesimal generator for 

Equation (1).
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Now, to complete the classification one must prove the determining equation for the KdV equation 
with delay.

According to group analysis theory, the transformation � :� �� �S  which transforms a solution 
of the differential equation to a solution of the same equation is a symmetry of Equation (1),where a 
set of variables is denoted by Ω and S R⊆  is a symmetric interval with respect to zero. The transfor-
mation ϕ  is consider ε  as a parameter which transforms variables t x u, ,  to new variables t x u, ,  of the 
same space, where

t t x u t x ut t= ( , , ; ) = ( , , )� � �� , x t x u t x ux x= ( , , ; ) = ( , , )� � �� , u t x u t x uu u= ( , , ; ) = ( , , )� � �� .
Since u u t x� �= ( , )� , then u t x u t x uu u� �

�
�� � � � �= ( , , ; ) = ( , , )� � .

The set of function ��  forms a one-parameters group [14].
Now consider the function 

u f t x u u u u u F t x u u u u u uxxx t x xx t x xx xxx� ( , , , , , , ) = ( , , , , , , , ) = 0� � � � (4)

According to Lie [13] the equation with the transformation variables t x u u, , , τ  and its derivatives 
with respect to ε  must vanishes if the transformation is symmetry. 

�
�

F t x u u u u u ut x xx xxx( , , , , , , , ) = 0=0,(4)

� �

��
| (5)

Since F  is a symmetry group (according to Olver [12]), then F F=  this mean F  is invariant. From 
Theorems in Bluman and Ibragimov [13,14] 

X F(3)
(4)= 0| (6)

where X (3)  is a canonical Lie Backlund operator. Then Equation (6) is called determining equation of 
Equation(1).
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where � � �� = ( , , )t x u�  and u u t x� �= ( , )� . Then 

� � � � �� � �
t x x xx xxxu u r(1) (1) (2) (3) = 0� � � � (7)

which leads to:
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Equating the coefficient of the various monomial in the first, second and third order partial deriva-
tive of u  to get the following determining equation for the symmetry group of Equation (1). 
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First (8.4) and (8.14) require that η  be just a function of t . From (8.5) ξ  independent on u , and from 
(8.26) ζ  independent on x . (8.11) leads to ζ  is linear in u  and � = ( ) ( )g t u h t� , when g  and h are a 
function of t . From (8.2) and (8.27) � �x t g t= = ( ).

Now, from (8.37) � �� �
u x= 2 , then by periodic theorem � ��= , and � ��= , this mean � ��x x= . By above 

� ��
u x g t= 2 = 2 ( ), thus � �� = 2 ( ) ( , )g t u k t x� �  for some k  is arbitrary function.

(8.1) gives g u h r g u kt t xx xx� � �(2 ) = 0� , where k k t x� �= ( , )� . Equating the coefficients of various 
monomials to get 

g rgt xx+ 2 = 0 (9)

h rkt xx� � = 0

Since g  is a function of t , then gxx = 0, also since ηt g=  this mean ηtt tg= .
Equation(9) gives ηtt = 0, by integrating � = 1 2c t c� . Since � �t x= , then ξx c= 1 , and � = 1 3c x c� , for 

some c c c1 2 3, ,  are arbitrary constants.
From above g c= 1 , then � = 1c u h�  and � � �= 2 1c u k� . That is the general infinitesimal generator 
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X c x c
t

c t c
x

c u h
u

c u k
u

= ( ) ( ) ( ) (2 )1 3 1 2 1 1�
�
�
� �

�
�

� �
�
�

� �
�
�

�
�
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Not that X4  is an infinite dimensional Lie subalgebra.
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Using Lie equation on this space to get

X t t x e u e u u1 : ( , , , )� � � � �� �

X t x u u2 : ( , , , )� � �

X t x u u3 : ( , , , )� � �

X t x v t u w t x u4 : ( , , ( ) , ( , ) )� � � �� � �

Following Olver [12], if u t x F t x( , ) = ( , ) is a solution, then u gF t x= ( , ) is also a solution for any 
g  where g  is a group element. So whole families of solutions constructed by transformation of a 
known solution by any g . By above u t x F t x f t x f t x( , ) = ( , ) = ( , ) ( , )1 2+  is a solution of Equation (1), then‘ 
u gF t x= ( , ) when‘ u f= 1 and‘ u fτ = 2  is also a solution for Equation (1).

The family of the transformation solutions of Equation (1) is 

u f t x t e f t x t1 1 2= ( , )( 1) ( , )
� �

�� � � �

u F t x2 = ( , )� �

u F t x3 = ( , )� �

u F t x v t w t x4 = ( , ) ( ( ) ( , ))� � �� �

Finally, note that under special conditions the transformation solutions can be used to get the gen-
eral solution to the corresponding KdV with small delay.

4. Conclusion

 This work succeeded to solve KdV equation with small delay by employing an approach based on the 
prolongation of this equation and periodic property of ξ ’s theorem which help us to introduced the 
invariant for KdV with delay to classify these equations as Lie algebra without changing the space 
variables. The development of Olvers method led us to obtain the transformation solution for KdV 
equation with time delay. Under special conditions the transformation solutions can be used to solve 
the corresponding KdV. These findings enhance our understanding of the KdV equation with delay. 
Furthermore, we can consider this research as a base to study many scientific branches which use 
delay partial differential equations.
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